SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhong Jun) srt2:(2015-2019)"

Sökning: WFRF:(Zhong Jun) > (2015-2019)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Leebens-Mack, James H., et al. (författare)
  • One thousand plant transcriptomes and the phylogenomics of green plants
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 574:7780, s. 679-
  • Tidskriftsartikel (refereegranskat)abstract
    • Green plants (Viridiplantae) include around 450,000-500,000 species(1,2) of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
  •  
4.
  • Bäckhed, Fredrik, 1973, et al. (författare)
  • Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life
  • 2015
  • Ingår i: Cell Host & Microbe. - Cambridge : Elsevier BV. - 1931-3128 .- 1934-6069. ; 17:5, s. 690-703
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut microbiota is central to human health, but its establishment in early life has not been quantitatively and functionally examined. Applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers, we characterized the gut microbiome during the first year of life and assessed the impact of mode of delivery and feeding on its establishment. In contrast to vaginally delivered infants, the gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers. Nutrition had a major impact on early microbiota composition and function, with cessation of breast-feeding, rather than introduction of solid food, being required for maturation into an adult-like microbiota. Microbiota composition and ecological network had distinctive features at each sampled stage, in accordance with functional maturation of the microbiome. Our findings establish a framework for understanding the interplay between the gut microbiome and the human body in early life.
  •  
5.
  •  
6.
  • Huang, Chun Hua, et al. (författare)
  • Investigating the role of body size, ecology, and behavior in anuran eye size evolution
  • 2019
  • Ingår i: Evolutionary Ecology. - : Springer Science and Business Media LLC. - 0269-7653 .- 1573-8477. ; 33:4, s. 585-598
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertebrate eye size typically scales hypoallemetrically with body size-as animals grow larger their eyes get relatively smaller. Additionally, eye size is highly variable across species, and such variability often reflects functional adaptations to differences in behavior and/or ecology. The selective pressures underlying the evolution of eye size are especially well studied in birds, mammals, and fishes. However, whether similar scaling rules and selective pressures also underlie the evolution of eye size in amphibians remains enigmatic. Variation in eye size is intimately linked with variation in brain anatomy, as the retina is ontogenetically part of the brain. Eye size may therefore coevolve with brain size. Here we use phylogenetic comparative methods to study interspecific variation in eye volume across 44 species of anurans from 8 families from the Hengduan Mountains, China. We relate this variation to key factors known to impact eye size evolution in other vertebrate taxa such as body mass, habitat use, defense strategy and foraging mobility. We found that also in anurans eyes size scaled hypoallometrically with body mass. However, neither of the behavioral or ecological factors explained any variation in relative eye size in our sample. Whether this is representative for other frog species needs to be clarified. We therefore conclude that eye size in frogs is tightly linked to body mass evolution but that, at least in the species investigated here, none of our tested ecological and behavioral factors have a strong influence on eye size evolution.
  •  
7.
  • Klein, Alison P., et al. (författare)
  • Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 x 10(-8)). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PAN-DoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 x 10(-14)), rs2941471 at 8q21.11 (HNF4G, P = 6.60 x 10(-10)), rs4795218 at 17q12 (HNF1B, P = 1.32 x 10(-8)), and rs1517037 at 18q21.32 (GRP, P = 3.28 x 10(-8)). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
  •  
8.
  • Luo, Yi, et al. (författare)
  • Seasonality and brain size are negatively associated in frogs : evidence for the expensive brain framework
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The challenges of seasonal environments are thought to contribute to brain evolution, but in which way is debated. According to the Cognitive Buffer Hypothesis (CBH) brain size should increase with seasonality, as the cognitive benefits of a larger brain should help overcoming periods of food scarcity via, for instance, increased behavioral flexibility. However, in line with the Expensive Brain Framework (EBF) brain size should decrease with seasonality because a smaller brain confers energetic benefits in periods of food scarcity. Empirical evidence is inconclusive and mostly limited to homoeothermic animals. Here we used phylogenetic comparative analyses to test the impact of seasonality on brain evolution across 30 species of anurans (frogs) experiencing a wide range of temperature and precipitation. Our results support the EBF because relative brain size and the size of the optic tectum were negatively correlated with variability in temperature. In contrast, we found no association between the variability in precipitation and the length of the dry season with either brain size or the sizes of other major brain regions. We suggest that seasonality-induced food scarcity resulting from higher variability in temperature constrains brain size evolution in anurans. Less seasonal environments may therefore facilitate the evolution of larger brains in poikilothermic animals.
  •  
9.
  • Machiela, Mitchell J., et al. (författare)
  • Characterization of Large Structural Genetic Mosaicism in Human Autosomes
  • 2015
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 96:3, s. 487-497
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 x 3 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.
  •  
10.
  • Yang, Sheng-Chun, et al. (författare)
  • A hybrid parallel architecture for electrostatic interactions in the simulation of dissipative particle dynamics
  • 2017
  • Ingår i: Computer Physics Communications. - : Elsevier BV. - 0010-4655 .- 1879-2944. ; 220, s. 376-389
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we upgraded the electrostatic interaction method of CU-ENUF (Yang, et al., 2016) which first applied CUNFFT (nonequispaced Fourier transforms based on CUDA) to the reciprocal-space electrostatic computation and made the computation of electrostatic interaction done thoroughly in GPU. The upgraded edition of CU-ENUF runs concurrently in a hybrid parallel way that enables the computation parallelizing on multiple computer nodes firstly, then further on the installed GPU in each computer. By this parallel strategy, the size of simulation system will be never restricted to the throughput of a single CPU or GPU. The most critical technical problem is how to parallelize a CUNFFT in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Furthermore, the upgraded method is capable of computing electrostatic interactions for both the atomistic molecular dynamics (MD) and the dissipative particle dynamics (DPD). Finally, the benchmarks conducted for validation and performance indicate that the upgraded method is able to not only present a good precision when setting suitable parameters, but also give an efficient way to compute electrostatic interactions for huge simulation systems. Program summary Program title: HP-ENUF Program Files doi: http://dx.doLorg/10.17632/zncf24thpv.1 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C, C++, and CUDA C Supplementary material: The program is designed for effective electrostatic interactions of large-scale simulation systems, which runs on particular computers equipped with NVIDIA CPUs. It has been tested on (a) single computer node with Intel(R) Core(TM) i7-3770@ 3.40 GHz (CPU) and GTX 980 Ti (GPU), and (b) MPI parallel computer nodes with the same configurations. Nature of problem: For molecular dynamics simulation, the electrostatic interaction is the most time-consuming computation because of its long-range feature and slow convergence in simulation space, which approximately take up most of the total simulation time. Although the parallel method CU-ENUF (Yang et al., 2016) based on GPU has achieved a qualitative leap compared with previous methods in electrostatic interactions computation, the computation capability is limited to the throughput capacity of a single GPU for super scale simulation system. Therefore, we should look for an effective method to handle the calculation of electrostatic interactions efficiently for a simulation system with super-scale size. Solution method: We constructed a hybrid parallel architecture, in which CPU and GPU are combined to accelerate the electrostatic computation effectively. Firstly, the simulation system is divided into many subtasks via domain-decomposition method. Then MPI (Message Passing Interface) is used to implement the CPU parallel computation with each computer node corresponding to a particular subtask, and furthermore each subtask in one computer node will be executed in GPU in parallel efficiently. In this hybrid parallel method, the most critical technical problem is how to parallelize a CUNFFT (nonequispaced fast Fourier transform based on CUDA) in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Restrictions: The HP-ENUF is mainly oriented to super-scale system simulations, in which the performance superiority is shown adequately. However, for a small simulation system containing less than 106 particles, the mode of multiple computer nodes has no apparent efficiency advantage or even lower efficiency due to the serious network delay among computer nodes, than the mode of single computer node. References: (1) S.-C. Yang, H.J. Qian, Z.-Y. Lu, Appl. Comput. Harmon. Anal. 2016, http://dx.doLorg/10.1016/j.acha. 2016.04.009. (2) S.-C. Yang, Y.-L. Wang, G.-S. Jiao, H.J. Qian, Z.-Y. Lu, J. Comput. Chem. 37 (2016) 378. (3) S.-C. Yang, Y.-L. Zhu, H.-J. Qian, Z.-Y. Lu, Appl. Chem. Res. Chin. Univ., 2017, http://dx.doi.org/10.1007/ s40242-016-6354-5. (4) Y.-L. Zhu, H. Liu, Z.-W. Li, H.J. Qian, G. Milano, Z.-Y. Lu, J. Comput. Chem. 34 (2013) 2197.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (19)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Wang, Jun (3)
Kotrschal, Alexander (3)
Khaw, Kay-Tee (2)
Tremaroli, Valentina ... (2)
Bäckhed, Fredrik, 19 ... (2)
Bergman, Stefan (2)
visa fler...
Berndt, Sonja I (2)
Albanes, Demetrius (2)
Giles, Graham G (2)
White, Emily (2)
Peters, Ulrike (2)
Severi, Gianluca (2)
Shu, Xiao-Ou (2)
Zheng, Wei (2)
Kraft, Peter (2)
Dahlgren, Jovanna, 1 ... (2)
Duell, Eric J. (2)
Uversky, Vladimir N. (2)
Yu, Kai (2)
Roswall, Josefine (2)
Olson, Sara H. (2)
Petersen, Gloria M (2)
Bracci, Paige M (2)
Holly, Elizabeth A (2)
Kooperberg, Charles (2)
Li, Donghui (2)
Risch, Harvey A (2)
Tobias, Geoffrey S (2)
Wolpin, Brian M (2)
Zeleniuch-Jacquotte, ... (2)
Hartge, Patricia (2)
Amundadottir, Laufey ... (2)
Zhang, Li (2)
Rothman, Nathaniel (2)
Kovatcheva-Datchary, ... (2)
Lee, Ying Shiuan (2)
Zhao, Xin (2)
Li, Jun (2)
Yu, Jun (2)
Wentzensen, Nicolas (2)
Wang, Zhaoming (2)
Chung, Charles C. (2)
Real, Francisco X. (2)
Malats, Nuria (2)
Lu, Lingeng (2)
Orlow, Irene (2)
Sesso, Howard D (2)
Yang, Yi (2)
Khan, Muhammad Tanwe ... (2)
Xu, Xun (2)
visa färre...
Lärosäte
Stockholms universitet (9)
Uppsala universitet (5)
Umeå universitet (4)
Kungliga Tekniska Högskolan (4)
Göteborgs universitet (3)
Karolinska Institutet (3)
visa fler...
Högskolan i Halmstad (2)
Lunds universitet (2)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Medicin och hälsovetenskap (8)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy