SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zieger Paul) srt2:(2015-2019)"

Sökning: WFRF:(Zieger Paul) > (2015-2019)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engert, Andreas, et al. (författare)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • Ingår i: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
2.
  • Boy, M., et al. (författare)
  • Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 2015-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Centre of Excellence CRAICC (Cryosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011-2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change-cryosphere interactions that affect Arctic amplification.
  •  
3.
  • Burgos, María A., et al. (författare)
  • A global view on the effect of water uptake on aerosol particle light scattering
  • 2019
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • A reference dataset of multi-wavelength particle light scattering and hemispheric backscattering coefficients for different relative humidities (RH) between RH = 30 and 95% and wavelengths between lambda = 450 nm and 700 nm is described in this work. Tandem-humidified nephelometer measurements from 26 ground-based sites around the globe, covering multiple aerosol types, have been re-analysed and harmonized into a single dataset. The dataset includes multi-annual measurements from long-term monitoring sites as well as short-term field campaign data. The result is a unique collection of RH-dependent aerosol light scattering properties, presented as a function of size cut. This dataset is important for climate and atmospheric model-measurement inter-comparisons, as a means to improve model performance, and may be useful for satellite and remote sensing evaluation using surface-based, in-situ measurements.
  •  
4.
  • Franke, Vera, et al. (författare)
  • Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden
  • 2017
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical composition of atmospheric particulate matter at Mt. angstrom reskutan, a mountaintop site in central Sweden, was analysed with a focus on its carbonaceous content. Filter samples taken during the Cloud and Aerosol Experiment at angstrom re (CAEsAR 2014) were analysed by means of a thermo-optical method and ion chromatography. Additionally, the particle light absorption and particle number size distribution measurements for the entire campaign were added to the analysis. Mean airborne concentrations of organic and elemental carbon during CAEsAR 2014 were OC= 0.85 +/- 0.8 mu gm(-3) and EC = 0.06 +/- 0.06 mu gm(-3), respectively. Elemental to organic carbon ratios varied between EC/OC = 0.02 and 0.19. During the study a large wildfire occurred in Vastmanland, Sweden, with the plume reaching our study site. This led to significant increases in OC and EC concentrations (OC = 3.04 +/- 0.03 mu gm(-3) and EC = 0.24 +/- 0.00 mu gm(-3)). The mean mass-specific absorption coefficient observed during the campaign was sigma(BC)(abs) = 9.1 +/- 7.3 m(2)g(-1) (at wavelength lambda= 637 nm). In comparison to similarly remote European sites, Mt. angstrom reskutan experienced significantly lower carbonaceous aerosol loadings with a clear dominance of organic carbon. A mass closure study revealed a missing chemical mass fraction that likely originated from mineral dust. Potential regional source contributions of the carbonaceous aerosol were investigated using modelled air mass back trajectories. This source apportionment pointed to a correlation between high EC concentrations and air originating from continental Europe. Particles rich in organic carbon most often arrived from highly vegetated continental areas. However, marine regions were also a source of these aerosol particles. The source contributions derived during this study were compared to emission inventories of an Earth system model. This comparison highlighted a lack of OC and EC point-sources in the model's emission inventory which could potentially lead to an underestimation of the carbonaceous aerosol reaching Mt. angstrom reskutan in the simulation of this Earth system model.
  •  
5.
  • Haslett, Sophie L., et al. (författare)
  • The radiative impact of out-of-cloud aerosol hygroscopic growth during the summer monsoon in southern West Africa
  • 2019
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 1505-1520
  • Tidskriftsartikel (refereegranskat)abstract
    • Water in the atmosphere can exist in the solid, liquid or gas phase. At high humidities, if the aerosol population remains constant, more water vapour will condense onto the particles and cause them to swell, sometimes up to several times their original size. This significant change in size and chemical composition is termed hygroscopic growth and alters a particle's optical properties. Even in unsaturated conditions, this can change the aerosol direct effect, for example by increasing the extinction of incoming sunlight. This can have an impact on a region's energy balance and affect visibility. Here, aerosol and relative humidity measurements collected from aircraft and radiosondes during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) campaign were used to estimate the effect of highly humid layers of air on aerosol optical properties during the monsoon season in southern West Africa. The effects of hygroscopic growth in this region are of particular interest due to the regular occurrence of high humidity and the high levels of pollution in the region. The Zdanovskii, Stokes and Robinson (ZSR) mixing rule is used to estimate the hygroscopic growth of particles under different conditions based on chemical composition. These results are used to estimate the aerosol optical depth (AOD) at lambda = 525 nm for 63 relative humidity profiles. The median AOD in the region from these calculations was 0.36, the same as that measured by sun photometers at the ground site. The spread in the calculated AODs was less than the spread from the sun photometer measurements. In both cases, values above 0.5 were seen predominantly in the mornings and corresponded with high humidities. Observations of modest variations in aerosol load and composition are unable to explain the high and variable AODs observed using sun photometers, which can only be recreated by accounting for the very elevated and variable relative humidities (RHs) in the boundary layer. Most importantly, the highest AODs present in the mornings are not possible without the presence of high RH in excess of 95 %. Humid layers are found to have the most significant impact on AOD when they reach RH greater than 98 %, which can result in a wet AOD more than 1.8 times the dry AOD. Unsaturated humid layers were found to reach these high levels of RH in 37% of observed cases. It can therefore be concluded that the high AODs present across the region are driven by the high humidities and are then moderated by changes in aerosol abundance. Aerosol concentrations in southern West Africa are projected to increase substantially in the coming years; results presented here show that the presence of highly humid layers in the region is likely to enhance the consequent effect on AOD significantly.
  •  
6.
  • Renard, Jean-Baptiste, et al. (författare)
  • LOAC : a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 1
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:4, s. 1721-1742
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, optical aerosol particles counters (OPCs) provide the size distribution in diameter range from about 100 nm to a few tens of mu m. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter named LOAC (Light Optical Aerosol Counter), which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12 degrees, and is almost insensitive to the refractive index of the particles; the second one is around 60 degrees and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve the size distribution between 0.2 and 100 mu m and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles) when the aerosol is relatively homogeneous. This typology is based on calibration charts obtained in the laboratory. The uncertainty for total concentrations measurements is +/- 20% when concentrations are higher than 1 particle cm 3 (for a 10 min integration time). For lower concentrations, the uncertainty is up to about +/- 60% for concentrations smaller than 10 2 particle cm(-3). Also, the uncertainties in size calibration are +/- 0.025 mu m for particles smaller than 0.6 mu m, 5% for particles in the 0.7-2 mu m range, and 10% for particles greater than 2 mu m. The measurement accuracy of sub-micronic particles could be reduced in a strongly turbid case when concentration of particles > 3 mu m exceeds a few particles cm(-3). Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The typology of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, sea spray, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations.
  •  
7.
  • Renard, Jean-Baptiste, et al. (författare)
  • LOAC : a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:8, s. 3673-3686
  • Tidskriftsartikel (refereegranskat)abstract
    • In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60A degrees. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2aEuro-A mu m up to possibly more than 100aEuro-A mu m depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20aEuro-A mu m in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
  •  
8.
  • Salter, Matthew E., et al. (författare)
  • An empirically derived inorganic sea spray source function incorporating sea surface temperature
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:19, s. 11047-11066
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed an inorganic sea spray source function that is based upon state-of-the-art measurements of sea spray aerosol production using a temperature-controlled plunging jet sea spray aerosol chamber. The size-resolved particle production was measured between 0.01 and 10 mu m dry diameter. Particle production decreased non-linearly with increasing seawater temperature (between -1 and 30 degrees C) similar to previous findings. In addition, we observed that the particle effective radius, as well as the particle surface, particle volume and particle mass, increased with increasing seawater temperature due to increased production of particles with dry diameters greater than 1 mu m. By combining these measurements with the volume of air entrained by the plunging jet we have determined the size-resolved particle flux as a function of air entrainment. Through the use of existing parameterisations of air entrainment as a function of wind speed, we were subsequently able to scale our laboratory measurements of particle production to wind speed. By scaling in this way we avoid some of the difficulties associated with defining the white area of the laboratory whitecap - a contentious issue when relating laboratory measurements of particle production to oceanic whitecaps using the more frequently applied whitecap method. The here-derived inorganic sea spray source function was implemented in a Lagrangian particle dispersion model (FLEXPART - FLEXible PARTicle dispersion model). An estimated annual global flux of inorganic sea spray aerosol of 5.9 +/- 0.2 Pg yr(-1) was derived that is close to the median of estimates from the same model using a wide range of existing sea spray source functions. When using the source function derived here, the model also showed good skill in predicting measurements of Na+ concentration at a number of field sites further underlining the validity of our source function. In a final step, the sensitivity of a large-scale model (NorESM - the Norwegian Earth System Model) to our new source function was tested. Compared to the previously implemented parameterisation, a clear decrease of sea spray aerosol number flux and increase in aerosol residence time was observed, especially over the Southern Ocean. At the same time an increase in aerosol optical depth due to an increase in the number of particles with optically relevant sizes was found. That there were noticeable regional differences may have important implications for aerosol optical properties and number concentrations, subsequently also affecting the indirect radiative forcing by non-sea spray anthropogenic aerosols.
  •  
9.
  • Salter, Matthew E., et al. (författare)
  • Calcium enrichment in sea spray aerosol particles
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:15, s. 8277-8285
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea spray aerosol particles are an integral part of the Earth's radiation budget. To date, the inorganic composition of nascent sea spray aerosol particles has widely been assumed to be equivalent to the inorganic composition of seawater. Here we challenge this assumption using a laboratory sea spray chamber containing both natural and artificial seawater, as well as with ambient aerosol samples collected over the central Arctic Ocean during summer. We observe significant enrichment of calcium in submicrometer (<1 μm in diameter) sea spray aerosol particles when particles are generated from both seawater sources in the laboratory as well as in the ambient aerosols samples. We also observe a tendency for increasing calcium enrichment with decreasing particle size. Our results suggest that calcium enrichment in sea spray aerosol particles may be environmentally significant with implications for our understanding of sea spray aerosol, its impact on Earth's climate, as well as the chemistry of the marine atmosphere.
  •  
10.
  • Titos, G., et al. (författare)
  • Effect of hygroscopic growth on the aerosol light-scattering coefficient : A review of measurements, techniques and error sources
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 141, s. 494-507
  • Forskningsöversikt (refereegranskat)abstract
    • Knowledge of the scattering enhancement factor,.f(RH), is important for an accurate description of direct aerosol radiative forcing. This factor is defined as the ratio between the scattering coefficient at enhanced relative humidity, RH, to a reference (dry) scattering coefficient. Here, we review the different experimental designs used to measure the scattering coefficient at dry and humidified conditions as well as the procedures followed to analyze the measurements. Several empirical parameterizations for the relationship between f(RH) and RH have been proposed in the literature. These parameterizations have been reviewed and tested using experimental data representative of different hygroscopic growth behavior and a new parameterization is presented. The potential sources of error in f(RH) are discussed. A Monte Carlo method is used to investigate the overall measurement uncertainty, which is found to be around 20-40% for moderately hygroscopic aerosols. The main factors contributing to this uncertainty are the uncertainty in RH measurement, the dry reference state and the nephelometer uncertainty. A literature survey of nephelometry-based f(RH) measurements is presented as a function of aerosol type. In general, the highest f(RH) values were measured in clean marine environments, with pollution having a major influence on f(RH). Dust aerosol tended to have the lowest reported hygroscopicity of any of the aerosol types studied. Major open questions and suggestions for future research priorities are outlined.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Zieger, Paul (12)
Riipinen, Ilona (4)
Ström, Johan (3)
Acosta Navarro, Juan ... (2)
Kirkevag, A. (2)
Krejci, Radovan (2)
visa fler...
Tunved, Peter (2)
Sciare, Jean (2)
Kulmala, M (1)
Hong, J (1)
Soares, J (1)
Svensson, J (1)
Johnson, C. Magnus (1)
Tesche, Matthias (1)
Seland, O. (1)
Iversen, T. (1)
Hansson, Hans-Christ ... (1)
Ekman, Annica M. L. (1)
Campo, Elias (1)
Fitzgibbon, Jude (1)
Graf, Thomas (1)
Macintyre, Elizabeth (1)
Weyhenmeyer, Gesa A. (1)
Ljungman, Per (1)
Cant, Andrew (1)
Davi, Frederic (1)
Stamatopoulos, Kosta ... (1)
Zolla, Lello (1)
Roldin, Pontus (1)
Duplissy, J. (1)
Petaja, T. (1)
Virtanen, A. (1)
Andrews, E (1)
Goldschmidt, Hartmut (1)
Flygare, Johan (1)
Backman, J (1)
Isaksson, E (1)
Medvinsky, Alexander (1)
Kadir, Rezan (1)
Kasurinen, V. (1)
Russo, Roberta (1)
Weingartner, Ernest (1)
Baltensperger, Urs (1)
Harrison, Claire (1)
Griesshammer, Martin (1)
Olsson, Martin (1)
Stegmayr, Bernd (1)
Pettersson, Jan B. C ... (1)
Lenz, Georg (1)
Skov, H. (1)
visa färre...
Lärosäte
Stockholms universitet (12)
Uppsala universitet (3)
Lunds universitet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy