SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zimmerman A.) srt2:(2005-2009)"

Sökning: WFRF:(Zimmerman A.) > (2005-2009)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Carpenter, Stephen R., et al. (författare)
  • Accelerate Synthesis in Ecology and Environmental Sciences
  • 2009
  • Ingår i: BioScience. - : Oxford University Press (OUP). - 0006-3568 .- 1525-3244. ; 59:8, s. 699-701
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecology is a leading discipline in the synthesis of diverse knowledge. Ecologists have had considerable experience in bringing together diverse, multinational data sets, disciplines, and cultural perspectives to address a wide range of issues in basic and applied science. Now is the time to build on this foundation and invest in ecological synthesis through new national or international programs. While synthesis takes place through many mechanisms, including individual efforts, working groups, and research networks, centers are extraordinarily effective institutional settings for advancing synthesis projects.
  •  
4.
  • Al-Marooqi, S.H, et al. (författare)
  • Pore-Scale modelling of NMR relaxation for the characterization of wettability
  • 2006
  • Ingår i: Journal of Petroleum Science and Engineering. - : Elsevier BV. - 0920-4105 .- 1873-4715. ; 52:1-4, s. 172-186
  • Tidskriftsartikel (refereegranskat)abstract
    • Several research groups are currently investigating the determination of wettability usingNMR relaxation times. Although correlations with traditional wettability indices have been presented with some success, further effort is needed to relate the wettability atpore-scale to a core-scale measurement of NMR response. For example, a qualitative method using the arithmetic mean of relaxation times at various saturations has been presented [Guan, H., Brougham, D., Sorbie, K.S., Packer, K.J., 2002. Wettability effects in a sandstone reservoir and outcrop cores from NMR relaxation time distributions. J. Petroleum Sci. and Eng. 34, 35-54] and a wettability index that quantifies the amount of surface area that is wetted either by oil or by water, by using the T2 peak at four different saturations has been proposed [Fleury, M., Deflandre, F., 2003. Quantitative evaluation of porous media wettability using NMR relaxometry. Mag. Reson. Imaging 21, 385-387]. Our group at the Imperial College have previously shown experimentally that the T2 distribution provides valuable information about wettability and overall fluid distribution within thepore-space, which is lost if only a single value from the T2 distribution is considered [Al-Mahrooqi, S.H., Grattoni, C.A., Moss, A.K., Jing, X.D., 2003. An investigation of the effect ofwettability on NMR characteristics of sandstone rock and fluid systems. J. Petroleum Sci. and Eng. 39, 389-398]. In this paper we use a simple pore-scale model to understand the effect of wetting and its relationship with NMR relaxation times. The model uses triangular capillary pores with a given pore size distribution. The oil/water distribution within thepores is obtained as a function of capillary pressure and wettability. At a given capillary pressure, the volumes and surface areas of water and oil are calculated for each individual pore. This allows us to calculate the theoretical T2 distribution for that pore size distribution as a function of wettability and saturation. We have used the model to study the T2 distribution for a range of wettabilities and saturations. Results from the model confirmed previous observations from experiments regarding the effect of wettability onNMR T2 distributions. Based on these qualitative results, an improved index for characterising wettability from the T2 distribution has been proposed. We tested the proposed index using NMR T2 data from synthetic and real sandstone core plugs with different wettabilities, ranging from strongly water-wet to strongly oil-wet. Comparison between the proposed index and wettability for the synthetic samples and Amott-Harvey index for core plugs show good correlation. 
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Al-ajmi, A.M, et al. (författare)
  • Relation between the Mogi and the Coulomb failure criteria
  • 2005
  • Ingår i: International Journal of Rock Mechanics And Mining Sciences. - : Elsevier BV. - 1365-1609 .- 1873-4545. ; 42:3, s. 431-439
  • Tidskriftsartikel (refereegranskat)abstract
    • We have shown that linear Mogi criterion does a good job in representing rock failureunder polyaxial stress states. When σ2 = σ3 the linear version of Mogi's triaxial failurecriterion reduces exactly to the Coulomb criterion. Hence, the linear Mogi criterion can be thought of as a natural extension of the Coulomb criterion into three dimensions (i.e., polyaxial stress space). As Mohr's extension of the Coulomb criterion into three dimensions is often referred to as the Mohr-Coulomb criterion, we propose that the linear version of the Mogi criterion be known as the "Mogi-Coulomb" failure criterion. The classical Coulomb failure criterion can therefore be thought of as a special case, which applies only when σ2 = σ3 of the more general linear Mogi failure criterion. Furthermore, we found that the numerical values of the parameters that appear in the Mogi-Coulombcriterion can be estimated from conventional triaxial test data. Thus, this polyaxial failurecriterion can be applied even in the absence of polyaxial (true triaxial) data. This offers a great advantage, as most laboratories are equipped to conduct only traditional σ2 = σ3tests. Finally, we showed that if the linear form of the Mogi criterion is used, the parameters that appear in it can be unambiguously related to the traditional parameters appearing in the Coulomb failure law. The lack of such a relationship for the parameters appearing in the power-law Mogi criterion has been cited in [8] as a major drawback to the use of that model. 
  •  
9.
  • Bäckström, Ann, 1976- (författare)
  • Rock damage caused by underground excavation and meteorite impacts
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The intent of this thesis is to contribute to the understanding of the origin of fractures in rock. The man-made fracturing from engineering activities in crystalline rock as well as the fracturing induced by the natural process of meteorite impacts is studied by means of various characterization methods. In contrast to engineering induced rock fracturing, where the goal usually is to minimize rock damage, meteorite impacts cause abundant fracturing in the surrounding bedrock. In a rock mass the interactions of fractures on the microscopic scale (mm-cm scale) influence fractures on the mesoscopic scale (dm-m scale) as well as the interaction of the mesocopic fractures influencing fractures on the macroscopic scale (m-km scale). Thus, among several methods used on different scales, two characterization tools have been developed further. This investigation ranges from the investigation of micro-fracturing in ultra-brittle rock on laboratory scale to the remote sensing of fractures in large scale structures, such as meteorite impacts. On the microscopic scale, the role of fractures pre-existing to the laboratory testing is observed to affect the development of new fractures. On the mesoscopic scale, the evaluation of the geometric information from 3D-laser scanning has been further developed for the characterisation of fractures from tunnelling and to evaluate the efficiency of the tunnel blasting technique in crystalline rock. By combining information on: i) the overbreak and underbreak; ii) the orientation and visibility of blasting drillholes and; iii) the natural and blasting fractures in three dimensions; a analysis of the rock mass can be made. This analysis of the rock mass is much deeper than usually obtained in rock engineering for site characterization in relation to the blasting technique can be obtained based on the new data acquisition. Finally, the estimation of fracturing in and around two meteorite impact structures has been used to reach a deeper understanding of the relation between fracture, their water content and the electric properties of the rock mass. A correlation between electric resistivity and fracture frequency in highly fractured crystalline rock has been developed and applied to potential impact crater structures. The results presented in this thesis enables more accurate modelling of rock fractures, both supporting rock engineering design and interpretation of meteorite impact phenomena.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy