SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zizka A.) srt2:(2020)"

Sökning: WFRF:(Zizka A.) > (2020)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Zizka, A., et al. (författare)
  • No one-size-fits-all solution to clean GBIF
  • 2020
  • Ingår i: Peerj. - : PeerJ. - 2167-8359. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, the control of quality and accuracy constitutes a particular concern. Automatic filtering is a scalable and reproducible means to identify potentially problematic records and tailor datasets from public databases such as the Global Biodiversity Information Facility (GBIF; http://www.gbif.org), for biodiversity analyses. However, it is unclear how much data may be lost by filtering, whether the same filters should be applied across all taxonomic groups, and what the effect of filtering is on common downstream analyses. Here, we evaluate the effect of 13 recently proposed filters on the inference of species richness patterns and automated conservation assessments for 18 Neotropical taxa, including terrestrial and marine animals, fungi, and plants downloaded from GBIF. We find that a total of 44.3% of the records are potentially problematic, with large variation across taxonomic groups (25-90%). A small fraction of records was identified as erroneous in the strict sense (4.2%), and a much larger proportion as unfit for most downstream analyses (41.7%). Filters of duplicated information, collection year, and basis of record, as well as coordinates in urban areas, or for terrestrial taxa in the sea or marine taxa on land, have the greatest effect. Automated filtering can help in identifying problematic records, but requires customization of which tests and thresholds should be applied to the taxonomic group and geographic area under focus. Our results stress the importance of thorough recording and exploration of the meta-data associated with species records for biodiversity research.
  •  
4.
  • Zizka, A., et al. (författare)
  • Biogeography and conservation status of the pineapple family (Bromeliaceae)
  • 2020
  • Ingår i: Diversity and Distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 26:2, s. 183-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To provide distribution information and preliminary conservation assessments for all species of the pineapple family (Bromeliaceae), one of the most diverse and ecologically important plant groups of the American tropics-a global biodiversity hotspot. Furthermore, we aim to analyse patterns of diversity, endemism and the conservation status of the Bromeliaceae on the continental level in the light of their evolutionary history. Location The Americas. Methods We compiled a dataset of occurrence records for 3,272 bromeliad species (93.4% of the family) and modelled their geographic distribution using either climate-based species distribution models, convex hulls or geographic buffers dependent on the number of occurrences available. We then combined this data with information on taxonomy and used the ConR software for a preliminary assessment of the conservation status of all species following Criterion B of the International Union for the Conservation of Nature (IUCN). Results Our results stress the Atlantic Forest in eastern Brazil, the Andean slopes, Central America and the Guiana Highlands as centres of bromeliad diversity and endemism. Phylogenetically ancient subfamilies of bromeliads are centred in the Guiana highlands whereas the large radiations of the group spread across different habitats and large geographic area. A total of 81% of the evaluated bromeliad species are Possibly Threatened with extinction. We provide range polygons for 3,272 species, as well as newly georeferenced point localities for 911 species in the novel "bromeliad" r package, together with functions to generate diversity maps for individual taxonomic or functional groups. Main conclusions Diversity centres of the Bromeliaceae agreed with macroecological patterns of other plant and animal groups, but show some particular patterns related to the evolutionary origin of the family, especially ancient dispersal corridors. A staggering 2/3rds of Bromeliaceae species might be threatened with extinction, especially so in tropical rain forests, raising concerns about the conservation of the family and bromeliad-dependent animal species.
  •  
5.
  • Helmstetter, A. J., et al. (författare)
  • Unraveling the Phylogenomic Relationships of the Most Diverse African Palm Genus Raphia (Calamoideae, Arecaceae)
  • 2020
  • Ingår i: Plants-Basel. - : MDPI AG. - 2223-7747. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Palms are conspicuous floristic elements across the tropics. In continental Africa, even though there are less than 70 documented species, they are omnipresent across the tropical landscape. The genus Raphia has 20 accepted species in Africa and one species endemic to the Neotropics. It is the most economically important genus of African palms with most of its species producing food and construction material. Raphia is divided into five sections based on inflorescence morphology. Nevertheless, the taxonomy of Raphia is problematic with no intra-generic phylogenetic study available. We present a phylogenetic study of the genus using a targeted exon capture approach sequencing of 56 individuals representing 18 out of the 21 species. Our results recovered five well supported clades within the genus. Three sections correspond to those based on inflorescence morphology. R. regalis is strongly supported as sister to all other Raphia species and is placed into a newly described section: Erectae. Overall, morphological based identifications agreed well with our phylogenetic analyses, with 12 species recovered as monophyletic based on our sampling. Species delimitation analyses recovered 17 or 23 species depending on the confidence level used. Species delimitation is especially problematic in the Raphiate and Temulentae sections. In addition, our clustering analysis using SNP data suggested that individual clusters matched geographic distribution. The Neotropical species R. taedigera is supported as a distinct species, rejecting the hypothesis of a recent introduction into South America. Our analyses support the hypothesis that the Raphia individuals from Madagascar are potentially a distinct species different from the widely distributed R. farinifera. In conclusion, our results support the infra generic classification of Raphia based on inflorescence morphology, which is shown to be phylogenetically useful. Classification and species delimitation within sections remains problematic even with our phylogenomic approach. Certain widely distributed species could potentially contain cryptic species. More in-depth studies should be undertaken using morphometrics, increased sampling, and more variable markers. Our study provides a robust phylogenomic framework that enables further investigation on the biogeographic history, morphological evolution, and other eco-evolutionary aspects of this charismatic, socially, and economically important palm genus.
  •  
6.
  • Pimiento, C., et al. (författare)
  • Selective extinction against redundant species buffers functional diversity
  • 2020
  • Ingår i: Proceedings of the Royal Society B-Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 287:1931
  • Tidskriftsartikel (refereegranskat)abstract
    • The extinction of species can destabilize ecological processes. A way to assess the ecological consequences of species loss is by examining changes in functional diversity. The preservation of functional diversity depends on the range of ecological roles performed by species, or functional richness, and the number of species per role, or functional redundancy. However, current knowledge is based on short timescales and an understanding of how functional diversity responds to long-term biodiversity dynamics has been limited by the availability of deep-time, trait-based data. Here, we compile an exceptional trait dataset of fossil molluscs from a 23-million-year interval in the Caribbean Sea (34 011 records, 4422 species) and develop a novel Bayesian model of multi-trait-dependent diversification to reconstruct mollusc (i) diversity dynamics, (ii) changes in functional diversity, and (iii) extinction selectivity over the last 23 Myr. Our results identify high diversification between 23-5 Mya, leading to increases in both functional richness and redundancy. Conversely, over the last three million years, a period of high extinction rates resulted in the loss of 49% of species but only 3% of functional richness. Extinction rates were significantly higher in small, functionally redundant species suggesting that competition mediated the response of species to environmental change. Taken together, our results identify long-term diversification and selective extinction against redundant species that allowed functional diversity to grow over time, ultimately buffering the ecological functions of biological communities against extinction.
  •  
7.
  • Carrillo, Juan D., et al. (författare)
  • Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 117:42, s. 26281-26287
  • Tidskriftsartikel (refereegranskat)abstract
    • The interchange between the previously disconnected faunas of North and South America was a massive experiment in biological invasion. A major gap in our understanding of this invasion is why there was a drastic increase in the proportion of mammals of North American origin found in South America. Four nonmutually exclusive mechanisms may explain this asymmetry: 1) Higher dispersal rate of North American mammals toward the south, 2) higher origination of North American immigrants in South America, 3) higher extinction of mammals with South American origin, and 4) similar dispersal rate but a larger pool of native taxa in North versus South America. We test among these mechanisms by analyzing similar to 20,000 fossil occurrences with Bayesian methods to infer dispersal and diversification rates and taxonomic selectivity of immigrants. We find no differences in the dispersal and origination rates of immigrants. In contrast, native South American mammals show higher extinction. We also find that two clades with North American origin (Carnivora and Artiodactyla) had significantly more immigrants in South America than other clades. Altogether, the asymmetry of the interchange was not due to higher origination of immigrants in South America as previously suggested, but resulted from higher extinction of native taxa in southern South America. These results from one of the greatest biological invasions highlight how biogeographic processes and biotic interactions can shape continental diversity.
  •  
8.
  • Zizka, Alexander, 1986, et al. (författare)
  • Transitions between biomes are common and directional in Bombacoideae (Malvaceae)
  • 2020
  • Ingår i: Journal of Biogeography. - : Wiley. - 0305-0270 .- 1365-2699. ; 47:6, s. 1310-1321
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To quantify evolutionary transitions between tropical evergreen rain forest and seasonally dry biomes, to test whether biome transitions affect lineage diversification and to examine the robustness of these results to methodological choices. Location The tropics. Time period The Cenozoic. Major taxa studied The plant subfamily Bombacoideae (Malvaceae). Methods We inferred ancestral biomes based on a fossil-dated molecular phylogeny of 103 species (59% of the clade) and recorded the number of transitions among biomes using biogeographical stochastic mapping based on the dispersal-extinction-cladogenesis model. We then estimated diversification rates using state-specific speciation and extinction rate (SSE) methods. Furthermore, we tested the sensitivity of the results to model choice, phylogenetic uncertainty, measurement error and biome definition. Results We found numerous transitions from evergreen rain forest to seasonally dry biomes, and fewer in the opposite direction. These results were robust to methodological choices. Biome type did not influence diversification rates, although this result was subject to uncertainty, especially related to model choice and biome definition. Main conclusions Our results contradict the idea of evolutionary biome conservatism in Bombacoideae, and support previous findings that evergreen rain forests serve as a source for the flora of seasonally dry biomes. The impact of biome classification and biome definition on the results suggest caution when using a biome concept for biogeographical reconstruction and diversification rate analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy