SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zong D) srt2:(2010-2014)"

Sökning: WFRF:(Zong D) > (2010-2014)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adare, A., et al. (författare)
  • Direct photon production in d+Au collisions at root s(NN)=200 GeV
  • 2013
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 87:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct photons have been measured in root s(NN) = 200 GeV d + Au collisions at midrapidity. A wide p(T) range is covered by measurements of nearly real virtual photons (1 < p(T) < 6 GeV/c) and real photons (5 < p(T) < 16 GeV/c). The invariant yield of the direct photons in d + Au collisions over the scaled p + p cross section is consistent with unity. Theoretical calculations assuming standard cold-nuclear-matter effects describe the data well for the entire p(T) range. This indicates that the large enhancement of direct photons observed in Au + Au collisions for 1.0 < p(T) < 2.5 GeV/c is attributable to a source other than the initial-state nuclear effects.
  •  
2.
  • Adler, S. S., et al. (författare)
  • Transverse-energy distributions at midrapidity in p plus p, d plus Au, and Au plus Au collisions at root s(NN)=62.4-200 GeV and implications for particle-production models
  • 2014
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 89:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the midrapidity transverse-energy distribution, dE(T)/d eta, are presented for p + p, d+Au, and Au+Au collisions atv root s(NN) = 200 GeV and additionally for Au+Au collisions atv root s(NN) = 62.4 and 130 GeV. The dE(T)/d eta distributions are first compared with the number of nucleon participants N-part, number of binary collisions N-coll, and number of constituent-quark participants N-qp calculated from a Glauber model based on the nuclear geometry. For Au+Au, < dE(T)/d eta >/N-part increases with N-part, while < dE(T)/d eta >/N-qp is approximately constant for all three energies. This indicates that the two-component ansatz, dE(T)/d eta alpha (1 - x)N-part/2 + xN(coll), which was used to represent E-T distributions, is simply a proxy for N-qp, and that the N-coll term does not represent a hard-scattering component in E-T distributions. The dE(T)/d eta distributions of Au+Au and d+Au are then calculated from the measured p + p E-T distribution using two models that both reproduce the Au+Au data. However, while the number-of-constituent-quark-participant model agrees well with the d+Au data, the additive-quark model does not.
  •  
3.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
4.
  •  
5.
  • Zong, N. C., et al. (författare)
  • Integration of cardiac proteome biology and medicine by a specialized knowledgebase
  • 2013
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 113:9, s. 1043-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Omics sciences enable a systems-level perspective in characterizing cardiovascular biology. Integration of diverse proteomics data via a computational strategy will catalyze the assembly of contextualized knowledge, foster discoveries through multidisciplinary investigations, and minimize unnecessary redundancy in research efforts. Objective: The goal of this project is to develop a consolidated cardiac proteome knowledgebase with novel bioinformatics pipeline and Web portals, thereby serving as a new resource to advance cardiovascular biology and medicine. Methods and results: We created Cardiac Organellar Protein Atlas Knowledgebase (COPaKB; www.HeartProteome.org), a centralized platform of high-quality cardiac proteomic data, bioinformatics tools, and relevant cardiovascular phenotypes. Currently, COPaKB features 8 organellar modules, comprising 4203 LC-MS/MS experiments from human, mouse, drosophila, and Caenorhabditis elegans, as well as expression images of 10 924 proteins in human myocardium. In addition, the Java-coded bioinformatics tools provided by COPaKB enable cardiovascular investigators in all disciplines to retrieve and analyze pertinent organellar protein properties of interest. Conclusions: COPaKB provides an innovative and interactive resource that connects research interests with the new biological discoveries in protein sciences. With an array of intuitive tools in this unified Web server, nonproteomics investigators can conveniently collaborate with proteomics specialists to dissect the molecular signatures of cardiovascular phenotypes.
  •  
6.
  •  
7.
  • Fu, Huishan, et al. (författare)
  • The role of electrons during chorus intensification : Energy source and energy loss
  • 2012
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 80, s. 37-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of electrons during the shock-induced chorus intensification observed by THEMIS D on 19 November 2007 is investigated in detail. First, the electrons are accelerated through the local betatron acceleration and radial diffusion, which are primarily in the perpendicular direction and result in the positive anisotropy (T-perpendicular to > T-//) of electrons; then they are scattered through the pitch-angle diffusion, during which the electron energies are partially transferred to amplify the chorus. In the case of interest, the energy loss is more efficient for the lower-energy (15 key) electrons because they have larger density gradient along the diffusion curves. The energetic electrons act as the intermediate in this scenario. They transfer the energies carried by the interplanetary shock to the chorus. The energetic electrons injected from magnetotail are not observed; they have no contributions to the energy source in this event.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy