SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Bodegom Peter M.) srt2:(2010-2014)"

Sökning: WFRF:(van Bodegom Peter M.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keuper, Frida, et al. (författare)
  • A frozen feast : thawing permafrost increases plant-available nitrogen in subarctic peatlands
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 18:6, s. 1998-2007
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the world's northern peatlands are underlain by rapidly thawing permafrost. Because plant production in these peatlands is often nitrogen (N)-limited, a release of N stored in permafrost may stimulate net primary production or change species composition if it is plant-available. In this study, we aimed to quantify plant-available N in thawing permafrost soils of subarctic peatlands. We compared plant-available N-pools and -fluxes in near-surface permafrost (010cm below the thawfront) to those taken from a current rooting zone layer (515cm depth) across five representative peatlands in subarctic Sweden. A range of complementary methods was used: extractions of inorganic and organic N, inorganic and organic N-release measurements at 0.5 and 11 degrees C (over 120days, relevant to different thaw-development scenarios) and a bioassay with Poa alpina test plants. All extraction methods, across all peatlands, consistently showed up to seven times more plant-available N in near-surface permafrost soil compared to the current rooting zone layer. These results were supported by the bioassay experiment, with an eightfold larger plant N-uptake from permafrost soil than from other N-sources such as current rooting zone soil or fresh litter substrates. Moreover, net mineralization rates were much higher in permafrost soils compared to soils from the current rooting zone layer (273mgNm-2 and 1348mgNm-2 per growing season for near-surface permafrost at 0.5 degrees C and 11 degrees C respectively, compared to -30mgNm-2 for current rooting zone soil at 11 degrees C). Hence, our results demonstrate that near-surface permafrost soil of subarctic peatlands can release a biologically relevant amount of plant available nitrogen, both directly upon thawing as well as over the course of a growing season through continued microbial mineralization of organically bound N. Given the nitrogen-limited nature of northern peatlands, this release may have impacts on both plant productivity and species composition.
  •  
2.
  • Keuper, Frida, et al. (författare)
  • Tundra in the rain : Differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra
  • 2012
  • Ingår i: Ambio. - : Springer Netherlands. - 0044-7447 .- 1654-7209. ; 41:Suppl. 3, s. 269-280
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.
  •  
3.
  • Keuper, Frida, et al. (författare)
  • A race for space? : How Sphagnum fuscumstabilizes vegetation composition during long-termclimate manipulations
  • 2011
  • Ingår i: Global Change Biology. - : Blackwell. - 1354-1013 .- 1365-2486. ; 17:6, s. 2162-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong climate warming is predicted at higher latitudes this century, with potentially major consequences forproductivity and carbon sequestration. Although northern peatlands contain one-third of the world’s soil organiccarbon, little is known about the long-term responses to experimental climate change of vascular plant communities inthese Sphagnum-dominated ecosystems.We aimed to see how long-term experimental climate manipulations, relevantto different predicted future climate scenarios, affect total vascular plant abundance and species composition whenthe community is dominated by mosses. During 8 years, we investigated how the vascular plant community of aSphagnum fuscum-dominated subarctic peat bog responded to six experimental climate regimes, including factorialcombinations of summer as well as spring warming and a thicker snow cover. Vascular plant species composition inour peat bog was more stable than is typically observed in (sub)arctic experiments: neither changes in total vascularplant abundance, nor in individual species abundances, Shannon’s diversity or evenness were found in response tothe climate manipulations. For three key species (Empetrum hermaphroditum, Betula nana and S. fuscum) we alsomeasured whether the treatments had a sustained effect on plant length growth responses and how these responsesinteracted. Contrasting with the stability at the community level, both key shrubs and the peatmoss showed sustainedpositive growth responses at the plant level to the climate treatments. However, a higher percentage of mossencroachedE. hermaphroditum shoots and a lack of change in B. nana net shrub height indicated encroachment byS. fuscum, resulting in long-term stability of the vascular community composition: in a warmer world, vascular speciesof subarctic peat bogs appear to just keep pace with growing Sphagnum in their race for space. Our findings contributeto general ecological theory by demonstrating that community resistance to environmental changes does notnecessarily mean inertia in vegetation response.
  •  
4.
  • Krause, Sascha, et al. (författare)
  • Trait-based approaches for understanding microbial biodiversity and ecosystem functioning
  • 2014
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 5, s. 251-
  • Forskningsöversikt (refereegranskat)abstract
    • In ecology, biodiversity-ecosystem functioning (BEE) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEE of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEE using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEE studies are often inadequate to unravel BEE relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEE relationships and thus generating systematic principles in microbial ecology and more generally ecology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy