SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Den Bergh Wim) srt2:(2023)"

Sökning: WFRF:(van Den Bergh Wim) > (2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adl-Zarrabi, Bijan, 1959, et al. (författare)
  • Ground Source De-Icing and Snow Melting Systems for Infrastructure
  • 2023
  • Ingår i: Transportation Research Procedia. - 2352-1465 .- 2352-1457. ; 72, s. 1621-1628
  • Konferensbidrag (refereegranskat)abstract
    • Thermal de-icing and snow melting methods to control winter conditions on surfaces of transport infrastructure offer several advantages compared to conventional techniques. These include the automated control of safe surface conditions, avoidance of chemicals and their environmental impact and prolongation of the life span of the infrastructure. Hydronic heat transfer systems can take advantage of collection of solar energy mainly during summertime and seasonal storage of thermal energy by geothermal heat exchange. Making use of these renewable resources in combination with energy storage enables savings in primary energy. In June 2021, the International Energy Agency (IEA), initiated a project related to utilization of ground thermal energy sources for de-icing of surfaces in transport infrastructures. The present paper gives a first overview of the project goals and methods.
  •  
2.
  • He, Liang, et al. (författare)
  • Discrete element simulation of porous asphalt mixture clogging law
  • 2023
  • Ingår i: Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering. - : Chang'an University. - 1671-1637. ; 23:2, s. 78-91
  • Tidskriftsartikel (refereegranskat)abstract
    • To reveal the pore clogging law of porous asphalt mixture, the combination study of model experiment and simulation of porous asphalt mixture clogging was conducted. The pore characteristics of the porous asphalt mixture were analyzed based on the CT-scanning and discrete element software PFC3D V5. 0, and the pore data of the porous asphalt mixture were obtained. The aggregates of different particle sizes were put into PFC3D V5. 0, and the compacted virtual specimens were generated according to the pore characteristics. The accuracy of the model was verified by comparing the pore images of actual specimens with the MATLAB slices. In the self-weight condition, the simulation was set with the porous asphalt mixture specimen being intruded by clogging particles with specific gradation composition. The data of indoor experiments were compared and verified. The particle sizes of clogging particles were changed, and the pore decay rates of the specimen were analyzed. The clogging-sensitive particles were identified. In the self-weight condition, the fluid simulation experiment was introduced, and the change law of specimen clogging was analyzed by changing the seepage rate of fluid. Analysis results show that the virtual specimen generated by PFC3D V5. 0 has high accuracy, and the simulation reveals the clogging law of the specimen. The small particles not only accumulate at the throat position causing clogging, but also congregate and interlock with the particles of larger sizes resulting in clogging too. In the self-weight condition, the clogging is mainly concentrated at the upper 30 mm of the mixture specimen, and the size distribution of corresponding clogging-sensitive particles is 0. 150-0. 600 mm. The size distribution of clogging particles has a great impact on the clogging results. In the conditions of gravity and fluid, with the seepage rate increasing from 0. 005 m • s-1 to 0. 030 m • s-1, the changing rate of pore decay rate increases. In addition, the clogging particles remaining in the mixture decrease, accompanied by the reduction of the pore decay rate. Therefore, the local rainfall conditions should also be considered in the design and maintenance of drainage asphalt pavement. 2 tabs, 20 figs, 30 refs. © 2023 Chang'an University. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy