SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Hees H.) srt2:(2000-2004)"

Sökning: WFRF:(van Hees H.) > (2000-2004)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lundström, Ulla, et al. (författare)
  • Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic Countries
  • 2000
  • Ingår i: Geoderma. - 0016-7061 .- 1872-6259. ; 94:04-feb, s. 335-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Geochemical, mineralogical, micromorphological, microbiological, hydrochemical and hpdrological joint investigations were performed at two coniferous podzolic sites in the north of Sweden and at one in the south of Finland. Mycorrhizal fungi were found to create numerous pens (3-10-mu m diameter) in many weatherable mineral grains in the eluvial (E) horizon. During the growing season, identified low molecular weight (LMW) organic acids such as citric, shikimic, oxalic and fumaric acids comprised 0.5-5% of the DOC and 0.5-15% of the total acidity in soil solutions. Between 20% and 40% of the dissolved Al was bound to the identified LMW organic acids. Mineral dissolution via complexing LMW acids, probably exuded in part by the mycorrhiza hyphae, is likely to be a major weathering process in podzols. We found no evidence for a decreasing C/metal ratio of the migrating organo-metal complexes that could explain the precipitation of secondary Fe and AL in the illuvial (B) horizon. Instead, microbial degradation of organic ligands resulting in the release of ionic,Al and Fe to the soil solution may he an important process facilitating the formation of solid Al-SI-OH and Fe-OH phases in the podzol B horizon. However, within the B horizon transport as proto-imogilite (PI) sols might be possible. In the B horizon, the extractable,Al and Fe was predominantly inorganic. The large specific surface area (SSA) removable by oxalate extraction, the high point of zero charge salt effect (PZSE), the low cation exchange capacity (CEC) and the high sulphate exchange capacity (SEC), painted to the presence of short-range ordered variable charge phases. Imogolite type material (ITM) was indeed identified in all B horizons by IR spectroscopy and crystalline imogolite was found in the deep B horizon of one profile. Mossbauer spectroscopy indicated that Fe in the form of ferrihydrite was formed by intergrowth with an Al-Si-OH phase. The high amounts of Fe and Al transported from the O to the E horizon indicate that there could be an upward transport of these elements before they are leached to the B horizon. We hypothesize that the LMW Al complexes an transported by hyphae to the mor (O) layer, partly released and subsequently complexed by high molecular weight (HMW) acids.
  •  
2.
  •  
3.
  • Giesler, R., et al. (författare)
  • Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer.
  • 2000
  • Ingår i: Geoderma. - 0016-7061 .- 1872-6259. ; 94:2-4, s. 249-263
  • Tidskriftsartikel (refereegranskat)abstract
    • The mobilization of Al, Fe and Si in podzols is often associated with the weathering of silicate minerals in the E horizon, downward migration, and their accumulation lower in the soil profile. This study investigated Al, Fe, and Si concentrations in soil water (centrifugation samples) and estimated leaching losses from the humus layer in comparison with those in the mineral E and B horizon. Concentrations of total soluble Al and Fe in soil water were higher in the O and E horizons than in B horizon samples, but not significantly different between the two uppermost horizons. Si concentrations were higher in the E than in the O horizon. The amount of Al and Fe leaching from the E horizon (i.e. input to the B horizon) compared to amount leaching from the O horizon (i.e. the input to the E horizon) ranged from 92% to 163%. Calculated leaching losses from the lower B horizon were less than 3% of the input to the B horizon. The results suggest that a large part of the illuviated Al and Fe in the Bs horizon is derived from the O horizon. Similar values for the Si ranged from 56% to 61% (comparing E horizon output with E horizon input). Budget estimates available for one of the investigated podzols indicated that biocycling via above-ground litter explained < 12% of the estimated annual input of Al and Fe to the forest floor. Inputs of Al and Fe due to upward flow of capillary water accounted for about 26% of the Al and Fe in the O layer. The results show that there is a considerable pool of Si Al, Fe in the humus layer. This pool plays an important part in the present day biogeochemical cycling of these elements in podzolic soils. Several mechanisms possibly involved in the transfer of Al, Fe and Si from the mineral soil to the humus layer are discussed.
  •  
4.
  • Ilvesniemi, H., et al. (författare)
  • General description of the sampling techniques and the sites investigated in the Fennoscandinavian podzolization project
  • 2000
  • Ingår i: Geoderma. - 0016-7061 .- 1872-6259. ; 94:2-4, s. 109-123
  • Tidskriftsartikel (refereegranskat)abstract
    • A 3-year project focusing on the fundamental processes of podzolization was carried out on three sampling sites in northern Fennoscandinavia. The soils were selected based on the previous information of the soil properties to represent typical soils in the area. In this article, the post-glacial history of the sites, site vegetation and general properties of the soils, as well as the methods used are presented. Two of the sites were classified as Typic HapLocryods and one as an Entic Haplocryod. The post-glacial age of the sites was between 9000 and 9500 years BP and the parent material was glacial till in one of the sites and glaciofluvial material in two of them. (C) 2000 Elsevier Science B.V. All rights reserved.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy