SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Kuppevelt Toin) srt2:(2005-2009)"

Sökning: WFRF:(van Kuppevelt Toin) > (2005-2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • ten Dam, Gerdy B., et al. (författare)
  • Dermatan sulfate domains defined by the novel antibody GD3A12, in normal tissues and ovarian adenocarcinomas
  • 2009
  • Ingår i: Histochemistry and Cell Biology. - : Springer Science and Business Media LLC. - 1432-119X .- 0948-6143. ; 132:1, s. 117-127
  • Tidskriftsartikel (refereegranskat)abstract
    • Dermatan sulfate (DS) expression in normal tissue and ovarian cancer was investigated using the novel, phage display-derived antibody GD3A12 that was selected against embryonic glycosaminoglycans (GAGs). Antibody GD3A12 was especially reactive with DS rich in IdoA-GalNAc4S disaccharide units. IdoA residues are important for antibody recognition as DS polymers with low numbers of IdoA residues were less reactive, and expression of the DS epimerase in ovarian carcinoma cells was associated with expression of the GD3A12 epitope. Moreover, staining of antibody GD3A12 was abolished by chondroitinase-B lyase digestion. Expression of DS domains defined by antibody GD3A12 was confined to connective tissue of most organs examined and presented as a typical fibrillar-type of staining. Differential expression of the DS epitopes recognized by antibodies GD3A12 and LKN1 (4/2,4 di-O-sulfated DS) was best seen in thymus and spleen, indicating differential expression of various DS domains in these organs. In ovarian carcinomas strong DS expression was found in the stromal parts, and occasionally on tumor cells. Partial co-localization in ovarian carcinomas was observed with decorin, versican and type I collagen suggesting a uniform distribution of this specific DS epitope. This unique anti-DS antibody may be instrumental to investigate the function, expression, and localization of specific DS domains in health and disease.
  •  
3.
  • Escobar Galvis, Martha L., et al. (författare)
  • Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate
  • 2007
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 3:12, s. 773-778
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfate proteoglycans (HSPGs) interact with numerous proteins of importance in animal development and homeostasis. Heparanase, which is expressed in normal tissues and upregulated in angiogenesis, cancer and inflammation, selectively cleaves β-glucuronidic linkages in HS chains. In a previous study, we transgenically overexpressed heparanase in mice to assess the overall effects of heparanase on HS metabolism. Metabolic labeling confirmed extensive fragmentation of HS in vivo. In the current study we found that in liver showing excessive heparanase overexpression, HSPG turnover is accelerated along with upregulation of HS N- and O-sulfation, thus yielding heparin-like chains without the domain structure typical of HS. Heparanase overexpression in other mouse organs and in human tumors correlated with increased 6-O-sulfation of HS, whereas the domain structure was conserved. The heavily sulfated HS fragments strongly promoted formation of ternary complexes with fibroblast growth factor 1 (FGF1) or FGF2 and FGF receptor 1. Heparanase thus contributes to regulation of HS biosynthesis in a way that may promote growth factor action in tumor angiogenesis and metastasis.
  •  
4.
  • Götte, Martin, et al. (författare)
  • Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome.
  • 2008
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 17:7, s. 996-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced activity of beta4-galactosyltransferase 7 (beta4GalT-7), an enzyme involved in synthesizing the glycosaminoglycan linkage region of proteoglycans, is associated with the progeroid form of Ehlers-Danlos syndrome (EDS). In the invertebrates Drosophila melanogaster and Caenorhabditis elegans, mutations in beta4GalT-7 affect biosynthesis of heparan sulfate (HS), a modulator of several biological processes relevant to wound repair. We have analyzed structural alterations of HS and their functional consequences in human beta4GalT-7 Arg270Cys mutant EDS and control fibroblasts. HS disaccharide analysis by reversed phase ion-pairing chromatography revealed a reduced sulfation degree of HS paralleled by altered immunostaining patterns for the phage-display anti-HS antibodies HS4E4 and RB4EA12 in beta4GalT-7 mutant fibroblasts. Real-time PCR-analysis of 44 genes involved in glycosaminoglycan biosynthesis indicated that the structural alterations in HS were not caused by differential regulation at the transcriptional level. Scratch wound closure was delayed in beta4GalT-7-deficient cells, which could be mimicked by enzymatic removal of HS in control cells. siRNA-mediated knockdown of beta4GalT-7 expression induced morphological changes in control fibroblasts which suggested altered cell-matrix interactions. Adhesion of beta4GalT-7 deficient cells to fibronectin was increased while actin stress fiber formation was impaired relative to control cells. Also collagen gel contraction was delayed in the beta4GalT-7 mutants which showed a reduced formation of pseudopodia and filopodia, less efficient penetration of the collagen gels and a diminished formation of collagen suprastructures. Our study suggests an HS-dependent basic mechanism behind the altered wound repair phenotype of beta4GalT-7-deficient EDS patients.
  •  
5.
  • Kurup, Sindhulakshmi, et al. (författare)
  • Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 282:29, s. 21032-21042
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfates (HS) are linear carbohydrate chains, covalently attached to proteins, that occur on essentially all cell surfaces and in extracellular matrices. HS chains show extensive structural heterogeneity and are functionally important during embryogenesis and in homeostasis due to their interactions with various proteins. Phage display antibodies have been developed to probe HS structures, assess the availability of protein-binding sites, and monitor structural changes during development and disease. Here we have characterized two such antibodies, AO4B08 and HS4E4, previously noted for partly differential tissue staining. AO4B08 recognized both HS and heparin, and was found to interact with an ubiquitouys, N-, 2-O-, and 6-O-sulfated saccharide motif, including an internal 2-O-sulfate group. HS4E4 turned out to preferentially recognize low-sulfated HS motifs containing iduronic acid, and N-sulfated as well as N-acetylated glucosamine residues. Contrary to AO4B08, HS4E4 did not bind highly O-sulfated structures such as found in heparin.
  •  
6.
  • O'Callaghan, Paul, et al. (författare)
  • Heparan sulfate accumulation with Abeta deposits in Alzheimer's disease and Tg2576 mice is contributed by glial cells
  • 2008
  • Ingår i: Brain Pathology. - : Wiley. - 1015-6305 .- 1750-3639. ; 18:4, s. 548-561
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid beta-peptide (Abeta) plaques, one of the major neuropathological lesions in Alzheimer's disease (AD), can be broadly subdivided into two morphological categories: neuritic and diffuse. Heparan sulfate (HS) and HS proteoglycans (HSPGs) are codeposits of multiple amyloidoses, including AD. Although HS has been considered a limiting factor in the initiation of amyloid deposition, the pathological implications of HS in Abeta deposits of AD remain unclear. In this study, immunohistochemistry combined with fluorescence and confocal microscopy was employed to gain deeper insight into the accumulation of HS with Abeta plaques in sporadic and familial AD. Here we demonstrate that HS preferentially accumulated around the Abeta40 dense cores of neuritic plaques, but was largely absent from diffuse Abeta42 plaques, suggesting that Abeta42 deposition may occur independently of HS. A codeposition pattern of HS with Abeta deposits in Tg2576 mice was also examined. We identified the membrane-bound HSPGs, glypican-1 (GPC1) and syndecan-3 (SDC3), in glial cells associated with Abeta deposits, proximal to sites of HS accumulation. In mouse primary glial cultures, we observed increased levels of GPC1 and SDC3 following Abeta stimulation. These results suggest that HS codeposits with Abeta40 in neuritic plaques and is mainly derived from glial cells.
  •  
7.
  • Welch, Johanna E, et al. (författare)
  • Single chain fragment anti-heparan sulfate antibody targets the polyamine transport system and attenuates polyamine-dependent cell proliferation.
  • 2008
  • Ingår i: International Journal of Oncology. - 1019-6439. ; 32:4, s. 749-756
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth-promoting polyamines are polybasic compounds that efficiently enter cancer cells by as yet incompletely defined mechanisms. Strategies to inhibit their internalization may have important implications in the management of tumor disease. Here, we show that cellular binding and uptake of polyamines are inhibited by a single chain variable fragment anti-heparan sulfate (HS) antibody. Polyamine uptake was inhibited in a dose-dependent manner, and was associated with compensatory up-regulation of ornithine decarboxylase (ODC), i.e. the key enzyme of the polyamine biosynthesis pathway. Conversely, depletion of intracellular polyamines by the specific ODC-inhibitor alpha-difluoromethylornithine (DFMO) resulted in increased cellular binding of polyamine and anti-HS antibody. Importantly, anti-HS antibody also efficiently targeted DFMO-induced polyamine uptake, and combined polyamine biosynthesis inhibition by DFMO, and uptake inhibition by anti-HS antibody attenuated tumor cell proliferation in vitro. In conclusion, cell-surface HS proteoglycan is a relevant target for antibody-mediated inhibition of the uptake of polyamines, and polyamine-dependent cell proliferation.
  •  
8.
  • Wittrup, Anders, et al. (författare)
  • ScFv antibody-induced translocation of cell-surface heparan sulfate proteoglycan to endocytic vesicles: Evidence for heparan sulfate epitope specificity and role of both syndecan and glypican.
  • 2009
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 284:47, s. 32959-32967
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular uptake of several viruses and polybasic macromolecules requires the expression of cell-surface heparan sulfate proteoglycan (HSPG) through as yet ill-defined mechanisms. We unexpectedly found that among several cell-surface binding scFv anti-HS antibody (alphaHS) clones only one, AO4B08, efficiently translocated macromolecular cargo to intracellular vesicles through induction of HSPG endocytosis. Interestingly, AO4B08-induced PG internalization was strictly dependent on HS 2-O-sulfation and appeared independent on intact N-sulfation. AO4B08 and HIV-tat, i.e. a well-known cell penetrating peptide, were shown to compete for the internalizing PG population. To obtain a more detailed characterization of this pathway, we have developed a procedure for the isolation of endocytic vesicles by conjugating AO4B08 with superparamagnetic nano-particles. [35S]sulfate-labelled HSPG was found to accumulate in isolated, AO4B08-containing vesicles, providing first biochemical evidence for intact HSPG co-internalization with its ligand. Further analysis revealed the existence of both syndecan, i.e. a transmembrane HSPG, and glycosylphosphatidyl- inositol anchored glypican in purified vesicles. Importantly, internalized syndecan and glypican were found to colocalize in AO4B08-containing vesicles. Our data establish HSPGs as true internalizing receptors of macromolecular cargo, and indicate that the sorting of cell-surface HSPG to endocytic vesicles is determined by a specific HS epitope that can be carried by both syndecan and glypican core protein.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy