SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van de Rest O.) srt2:(2017)"

Sökning: WFRF:(van de Rest O.) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petroff, E., et al. (författare)
  • A polarized fast radio burst at low Galactic latitude
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford Academic. - 0035-8711 .- 1365-2966. ; 469:4, s. 4465-4482
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
  •  
2.
  • Berendsen, A. A. M., et al. (författare)
  • Association of Adherence to a Healthy Diet with Cognitive Decline in European and American Older Adults: A Meta-Analysis within the CHANCES Consortium
  • 2017
  • Ingår i: Dementia and Geriatric Cognitive Disorders. - : S. Karger AG. - 1420-8008 .- 1421-9824. ; 43:3-4, s. 215-227
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To examine the association between a healthy diet, assessed by the Healthy Diet Indicator (HDI), and cognitive decline in older adults. Methods: Data from 21,837 participants aged >= 55 years from 3 cohorts (Survey in Europe on Nutrition and the Elderly, a Concerted Action [SENECA], Rotterdam Study [RS], Nurses' Health Study [NHS]) were analyzed. HDI scores were based on intakes of saturated fatty acids, polyunsaturated fatty acids, mono-and disaccharides, protein, cholesterol, fruits and vegetables, and fiber. The Telephone Interview for Cognitive Status in NHS and Mini-Mental State Examination in RS and SENECA were used to assess cognitive function from multiple repeated measures. Using multivariable-adjusted, mixed linear regression, mean differences in annual rates of cognitive decline by HDI quintiles were estimated. Results: Multivariable-adjusted differences in rates in the highest versus the lowest HDI quintile were 0.01 (95% CI -0.01, 0.02) in NHS, 0.00 (95% CI -0.02, 0.01) in RS, and 0.00 (95% CI -0.05, 0.05) in SENECA with a pooled estimate of 0.00 (95% CI -0.01, 0.01), I-2 = 0%. Conclusions: A higher HDI score was not related to reduced rates of cognitive decline in European and American older adults. (C) 2017 The Author(s) Published by S. Karger AG, Basel
  •  
3.
  • Smartt, S. J., et al. (författare)
  • A kilonova as the electromagnetic counterpart to a gravitational-wave source
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7678, s. 75-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy