SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van der Helm J) srt2:(2006-2009)"

Sökning: WFRF:(van der Helm J) > (2006-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kroos, Marian, et al. (författare)
  • Update of the Pompe disease mutation database with 107 sequence variants and a format for severity rating.
  • 2008
  • Ingår i: Human mutation. - : Hindawi Limited. - 1098-1004 .- 1059-7794. ; 29:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Pompe disease was named after the Dutch pathologist Dr JC Pompe who reported about a deceased infant with idiopathic hypertrophy of the heart. The clinical findings were failure to thrive, generalized muscle weakness and cardio-respiratory failure. The key pathologic finding was massive storage of glycogen in heart, skeletal muscle and many other tissues. The disease was classified as glycogen storage disease type II and decades later shown to be a lysosomal disorder caused by acid alpha-glucosidase deficiency. The clinical spectrum of Pompe disease appeared much broader than originally recognized. Adults with the same enzyme deficiency, alternatively named acid maltase deficiency, were reported to have slowly progressive skeletal muscle weakness and respiratory problems, but no cardiac involvement. The clinical heterogeneity is largely explained by the kind and severity of mutations in the acid alpha-glucosidase gene (GAA), but secondary factors, as yet unknown, have a substantial impact. The Pompe disease mutation database aims to list all GAA sequence variations and describe their effect. This update with 107 sequence variations (95 being novel) brings the number of published variations to 289, the number of non-pathogenic mutations to 67 and the number of proven pathogenic mutations to 197. Further, this article introduces a tool to rate the various mutations by severity, which will improve understanding of the genotype-phenotype correlation and facilitate the diagnosis and prognosis in Pompe disease.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • van Noordwijk, AJ, et al. (författare)
  • A framework for the study of genetic variation in migratory behaviour
  • 2006
  • Ingår i: Journal of Ornithology. - : Springer Science and Business Media LLC. - 2193-7192 .- 2193-7206. ; 147:2, s. 221-233
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal's physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other migratory and life-history traits. At present, we have some knowledge of the pressures that operate at the various stages of migration, but we know very little about the extent of genetic variation in various aspects of the migratory syndrome. As a consequence, our ability to predict which species is capable of what kind of evolutionary change, and at which rate, is limited. Here, we review how our evolutionary understanding of migration may benefit from taking a quantitative-genetic approach and present a framework for studying the causes of phenotypic variation. We review past research, that has mainly studied single migratory traits in captive birds, and discuss how this work could be extended to study genetic variation in the wild and to account for genetic correlations and correlated selection. In the future, reaction-norm approaches may become very important, as they allow the study of genetic and environmental effects on phenotypic expression within a single framework, as well as of their interactions. We advocate making more use of repeated measurements on single individuals to study the causes of among-individual variation in the wild, as they are easier to obtain than data on relatives and can provide valuable information for identifying and selecting traits. This approach will be particularly informative if it involves systematic testing of individuals under different environmental conditions. We propose extending this research agenda by using optimality models to predict levels of variation and covariation among traits and constraints. This may help us to select traits in which we might expect genetic variation, and to identify the most informative environmental axes. We also recommend an expansion of the passerine model, as this model does not apply to birds, like geese, where cultural transmission of spatio-temporal information is an important determinant of migration patterns and their variation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy