SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van der Tak F.) srt2:(2020-2023)"

Sökning: WFRF:(van der Tak F.) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Dishoeck, E. F., et al. (författare)
  • Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe water in a wide range of environments and provide a legacy data set to address its physics and chemistry. Aims. The aim of WISH is to determine which physical components are traced by the gas-phase water lines observed with Herschel and to quantify the excitation conditions and water abundances in each of these components. This then provides insight into how and where the bulk of the water is formed in space and how it is transported from clouds to disks, and ultimately comets and planets. Methods. Data and results from WISH are summarized together with those from related open time programs. WISH targeted ∼80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars (luminosities from <1 to > 10Lpdbl) and from pre-stellar cores to protoplanetary disks. Lines of H2O and its isotopologs, HDO, OH, CO, and [O I], were observed with the HIFI and PACS instruments, complemented by other chemically-related molecules that are probes of ultraviolet, X-ray, or grain chemistry. The analysis consists of coupling the physical structure of the sources with simple chemical networks and using non-LTE radiative transfer calculations to directly compare models and observations. Results. Most of the far-infrared water emission observed with Herschel in star-forming regions originates from warm outflowing and shocked gas at a high density and temperature (> 10cm-3, 300-1000 K, v ∼ 25 km s-1), heated by kinetic energy dissipation. This gas is not probed by single-dish low-J CO lines, but only by CO lines with Jup > 14. The emission is compact, with at least two different types of velocity components seen. Water is a significant, but not dominant, coolant of warm gas in the earliest protostellar stages. The warm gas water abundance is universally low: orders of magnitude below the H2O/H2 abundance of 4 × 10-4 expected if all volatile oxygen is locked in water. In cold pre-stellar cores and outer protostellar envelopes, the water abundance structure is uniquely probed on scales much smaller than the beam through velocity-resolved line profiles. The inferred gaseous water abundance decreases with depth into the cloud with an enhanced layer at the edge due to photodesorption of water ice. All of these conclusions hold irrespective of protostellar luminosity. For low-mass protostars, a constant gaseous HDO/H2O ratio of ∼0.025 with position into the cold envelope is found. This value is representative of the outermost photodesorbed ice layers and cold gas-phase chemistry, and much higher than that of bulk ice. In contrast, the gas-phase NH3 abundance stays constant as a function of position in low-mass pre- and protostellar cores. Water abundances in the inner hot cores are high, but with variations from 5 × 10-6 to a few × 10-4 for low- and high-mass sources. Water vapor emission from both young and mature disks is weak. Conclusions. The main chemical pathways of water at each of the star-formation stages have been identified and quantified. Low warm water abundances can be explained with shock models that include UV radiation to dissociate water and modify the shock structure. UV fields up to 102-10times the general interstellar radiation field are inferred in the outflow cavity walls on scales of the Herschel beam from various hydrides. Both high temperature chemistry and ice sputtering contribute to the gaseous water abundance at low velocities, with only gas-phase (re-)formation producing water at high velocities. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing. In cold clouds, an elegant solution is that this apparently missing oxygen is locked up in larger μm-sized grains that do not contribute to infrared ice absorption. The fact that even warm outflows and hot cores do not show H2O at full oxygen abundance points to an unidentified refractory component, which is also found in diffuse clouds. The weak water vapor emission from disks indicates that water ice is locked up in larger pebbles early on in the embedded Class I stage and that these pebbles have settled and drifted inward by the Class II stage. Water is transported from clouds to disks mostly as ice, with no evidence for strong accretion shocks. Even at abundances that are somewhat lower than expected, many oceans of water are likely present in planet-forming regions. Based on the lessons for galactic protostars, the low-J H2O line emission (Eup < 300 K) observed in extragalactic sources is inferred to be predominantly collisionally excited and to originate mostly from compact regions of current star formation activity. Recommendations for future mid- to far-infrared missions are made.
  •  
2.
  • van der Tak, F. F. S., et al. (författare)
  • The Leiden Atomic and Molecular Database (LAMDA): Current status, recent updates, and future plans
  • 2020
  • Ingår i: Atoms. - : MDPI AG. - 2218-2004. ; 8:2
  • Forskningsöversikt (refereegranskat)abstract
    • The Leiden Atomic and Molecular Database (LAMDA) collects spectroscopic information and collisional rate coefficients for molecules, atoms, and ions of astrophysical and astrochemical interest. We describe the developments of the database since its inception in 2005, and outline our plans for the near future. Such a database is constrained both by the nature of its uses and by the availability of accurate data: we suggest ways to improve the synergies among users and suppliers of data. We summarize some recent developments in computation of collisional cross sections and rate coefficients. We consider atomic and molecular data that are needed to support astrophysics and astrochemistry with upcoming instruments that operate in the mid-and far-infrared parts of the spectrum.
  •  
3.
  • Gan, Yuner, et al. (författare)
  • Heterodyne performance and characteristics of terahertz MgB2hot electron bolometers
  • 2023
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 133:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied THz heterodyne detection in sub-micrometer MgB2 hot electron bolometer (HEB) mixers based on superconducting MgB2 films of ∼5nm (HEB-A), corresponding to a critical temperature (Tc) of 33.9 K, and ∼7nm (HEB-B), corresponding to a ?? of 38.4 K. We have measured a double sideband (DSB) receiver noise temperature of 2590 K for HEB-A and 2160 K for HEB-B at 1.6 THz and 5 K. By correcting for optical losses, both HEBs show receiver noise temperatures of ∼1600 K referenced to the front of anti-reflection (AR)-coated Si lenses. An intermediate frequency (IF) noise bandwidth of 11 GHz has been measured for both devices. The required local oscillator (LO) power is about 13 μW for both HEBs. We have also measured a DSB receiver noise temperature of 3290 K at 2.5 THz and 5 K but with an AR-coated lens optimized for 1.6 THz. Besides, we have observed a step-like structure in current voltage (IV) curves, which becomes weaker when the LO power increases and observable only in their differential resistance. Such a correlated structure appears also in the receiver output power as a function of voltage, which is likely due to electronic inhomogeneities intrinsic to the variations in the thickness of the MgB2 films. Different behavior in the IV curves around the low bias voltages, pumped with the same LO power at 1.6 and 5.3 THz, was observed for HEB-B, suggesting the presence of a high-energy σ-gap in the MgB2 film.
  •  
4.
  • Gan, Y., et al. (författare)
  • Low noise MgB2 hot electron bolometer mixer operated at 5.3 THz and at 20 K
  • 2021
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 119:20
  • Tidskriftsartikel (refereegranskat)abstract
    • We have demonstrated a low noise superconducting MgB2 hot electron bolometer (HEB) mixer working at the frequency of 5.3 terahertz (THz) with 20 K operation temperature. The bolometer consists of a 7 nm thick MgB2 submicrometer bridge contacted with a spiral antenna to couple THz radiation through a high resistive Si lens, and it has a superconducting critical temperature of 38 K. By using hot/cold blackbody loads and a Mylar beam splitter all in vacuum and applying a 5.25 THz far-infrared gas laser as a local oscillator, we measured a minimal double sideband receiver noise temperature of 3960 K at the LO power of 9.5 mu W. This can be further reduced to 2920 K if a Si lens with an antireflection coating optimized at this frequency and a 3 mu m beam splitter are used. The measured intermediate frequency (IF) noise bandwidth is 9.5 GHz. The low noise, wide IF bandwidth mixers, which can be operated in a compact, low dissipation Stirling cooler, are more suitable for space applications than the existing HEB mixers. Furthermore, we likely observed a signature of the double-gap in MgB2 by comparing current-voltage curves pumped at 5.3 and 1.6 THz.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy