SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(von Korff Schmising Clemens) srt2:(2015-2019)"

Sökning: WFRF:(von Korff Schmising Clemens) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pancaldi, Matteo, 1989-, et al. (författare)
  • Spiral metamaterials for terahertz magnetic field enhancement
  • 2019
  • Ingår i: META 2019 Lisbon - Portugal. - : META Conference. ; , s. 1343-1344
  • Konferensbidrag (refereegranskat)abstract
    • We designed a class of spiral thin-film antennas for enhancing, in the near field, the incident terahertz (THz) magnetic field. Indeed, using existing laser-based THz sources, our metamaterial geometry allows generating magnetic fields of the order of 2 T over a time scale of few picoseconds, enabling the investigation of nonlinear ultrafast spin dynamics in table-top experiments.
  •  
2.
  • Polley, Debanjan, et al. (författare)
  • Terahertz magnetic field enhancement in an asymmetric spiral metamaterial
  • 2018
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 51:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We use finite element simulations in both the frequency and the time-domain to study the terahertz resonance characteristics of a metamaterial (MM) comprising a spiral connected to a straight arm. The MM acts as a RLC circuit whose resonance frequency can be precisely tuned by varying the characteristic geometrical parameters of the spiral: inner and outer radius, width and number of turns. We provide a simple analytical model that uses these geometrical parameters as input to give accurate estimates of the resonance frequency. Finite element simulations show that linearly polarized terahertz radiation efficiently couples to the MM thanks to the straight arm, inducing a current in the spiral, which in turn induces a resonant magnetic field enhancement at the center of the spiral. We observe a large (approximately 40 times) and uniform (over an area of similar to 10 mu m(2)) enhancement of the magnetic field for narrowband terahertz radiation with frequency matching the resonance frequency of the MM. When a broadband, single-cycle terahertz pulse propagates towards the MM, the peak magnetic field of the resulting band-passed waveform still maintains a six-fold enhancement compared to the peak impinging field. Using existing laser-based terahertz sources, our MM design allows to generate magnetic fields of the order of 2 T over a time scale of several picoseconds, enabling the investigation of nonlinear ultrafast spin dynamics in table-top experiments. Furthermore, our MM can be implemented to generate intense near-field narrowband, multi-cycle electromagnetic fields to study generic ultrafast resonant terahertz dynamics in condensed matter.
  •  
3.
  • Vodungbo, Boris, et al. (författare)
  • Indirect excitation of ultrafast demagnetization.
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy