SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURAL SCIENCES) hsv:(Biological Sciences) hsv:(Immunology) srt2:(2000-2009)"

Sökning: hsv:(NATURAL SCIENCES) hsv:(Biological Sciences) hsv:(Immunology) > (2000-2009)

  • Resultat 1-10 av 201
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mamontov, Eugen, 1955 (författare)
  • Homeorhesis and evolutionary properties of living systems: From ordinary differential equations to the active-particle generalized kinetics theory
  • 2006
  • Ingår i: 10th Evolutionary Biology Meeting at Marseilles, 20-22 September 2006, Marseilles, France.
  • Konferensbidrag (refereegranskat)abstract
    • Advanced generalized-kinetic-theory (GKT) models for biological systems are developed for populations of active (or living) particles [1]-[5]. These particles are described with both the stochastic variables common in kinetic theory (such as time, the particle random location and velocity) and the stochastic variables related to the internal states of an active particle. Evolution of these states represents biological, ecological, or social properties of the particle behavior. Paper [6] analyzes a number of the well-known statistical-mechanics approaches and shows that the active-particle GKT (APGKT) is the only treatment capable of modelling living systems. Work [2] summarizes the significance of the notion of an active particle in kinetic models. This notion draws attention to the features distinguishing living matter from nonliving matter. They are discussed by many authors (e.g., [7]-[15], [1]-[3], [6], [16]-[18]). Work [11] considers a lot of differences between living and nonliving matters, and the limitations of the modelling approaches developed for nonliving matter. Work [6] mainly focuses on the comparison of a few theoretical mechanics treatments in terms of the key living-matter properties formulated in [15]. One of the necessary properties of the evolution of living systems is homeorhesis. It is, loosely speaking, a peculiar qualitative and quantitative insensitivity of a living system to the exogenous signals acting on it. The earlier notion, homeostasis, was introduced by W. B. Cannon in 1926 who discussed the phenomenon in detail later [7]. Homeorhesis introduced by C. H. Waddington [8, p. 32] generalizes homeostasis and is well known in biology [8], [9], [12]. It is an inherent part of mathematical models for oncogeny (e.g., [16]-[18], [6, Appendix]). Homeorhesis is also discussed in [3, Section 4] in connection with APGKT. Homeorhesis is documented in ecology (e.g., [11], [13, the left column on p. 675]) where it is one of the key notions of the strong Gaia theory, a version of the Gaia theory (e.g., [14, Chapter 8]). The strong Gaia theory “states that the planet with its life, a single living system, is regulated in certain aspects by that life” [14, p. 124]. The very origin of the name “Gaia” is related to homeorhesis or homeostasis [14, p. 118]. These notions are also used in psychology and sociology. If evolution of a system is not homeorhetic, the system can not be living. Work [6, Appendix] derives a preliminary mathematical formulation of homeorhesis in terms of the simplest dynamical systems, i.e. ordinary differential equations (ODEs). The present work complements, extended, and further specify the approach of [6, Appendix]. The work comprises the two main parts. The first part develops the sufficient conditions for ODE systems to describe homeorhesis, and suggests a fairly general structure of the ODE model. It regards homeorhesis as piecewise homeostasis. The model can be specified in different ways depending on specific systems and specific purposes of the analysis. An example of the specification is also noted (the PhasTraM nonlinear reaction-diffusion model for hyperplastic oncogeny [16]-[18]). The second part of the work discusses implementation of the above homeorhesis ODE model in terms of a special version [3] of APGKT (see above). The key feature of this version is that the components of a living population need not be discrete: the subdivision into the components is described with a general, continuous-discrete probability distribution (see also [6]). This enables certain properties of living matter noted in [15]. Moreover, the corresponding APGKT model presents a system of, firstly, a generalized kinetic equation for the conditional distribution function conditioned by the internal states of the population and, secondly, Ito's stochastic differential equations for these states. This treatement employs the results on nonstationary invariant diffusion stochastic processes [19]. The second part of the work also stresses that APGKT is substantially more important for the living-matter analysis than in the case of nonliving matter. One of the reasons is certain limitations in experimental sampling of the living-system modes presented with stochastic processes. A few directions for future research are suggested as well. REFERENCES: [1] Bellomo, N., Bellouquid, A. and Delitala, M., 2004, Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition, Math. Models Methods Appl. Sci., 14, 1683-1733. [2] Bellomo, N., 2006, New hot Paper Comments, Essential Science Indicators, http://www.esi-topics.com/nhp/2006 /may- 06-NicolaBellomo.html. [3] Willander, M., Mamontov, E. and Chiragwandi, Z., 2004, Modelling living fluids with the subdivision into the components in terms of probability distributions, Math. Models Methods Appl. Sci. 14, 1495-1520. [4] Bellomo, N. and Maini, P.K., 2005, Preface and the Special Issue “Multiscale Cancer Modelling-A New Frontier in Applied Mathematics”, Math. Models Methods Appl. Sci., 15, iii-viii. [5] De Angelis, E. and Delitala, M., 2006, Modelling complex systems in applied sciences: Methods and tools of the mathematical kinetic theory for active particles. Mathl Comput. Modelling, 43, 1310-1328. [6] Mamontov, E., Psiuk-Maksymowicz, K. and Koptioug, A., 2006, Stochastic mechanics in the context of the properties of living systems, Mathl Comput. Modelling, Article in Press, 13 pp. [7] Cannon, W.B., 1932, The Wisdom of the Body (New York: Norton). [8] Waddington, C.H., 1957, The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology (London, George Allen and Unwin). [9] Waddington, C.H., 1968, Towards a theoretical biology, Nature, 218, 525-527. [10] Cotnoir, P.-A., 1981, La compétence environnementale: Une affaire d’adaptation. Séminaire en écologie behaviorale, Univeristé du Québec, Montralé. Available online at: http://pac.cam.org/culture.doc . [11] O’Neill, R.V., DeAngelis, D.L., Waide, J.B. and Allen, T.F.H., 1986, A Hierarchical Concept of Ecosystems, Princeton: Princeton Univ. Press). [12] Sauvant, D., 1992, La modélisation systémique en nutrition, Reprod. Nutr. Dev., 32, 217-230. [13] Christensen, N.L., Bartuska, A.M., Brown, J.H., Carpenter, S., D'Antonio, C., Francis, R., Franklin, J.F., MacMahon, J.A., Noss, R.F., Parsons, D.J., Peterson, C.H., Turner, M.G. and Woodmansee, R.G., 1996, The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management, Ecological Applications, 6, 665-691. Available online at: http://www.esa.org/pao/esaPositions/Papers/ReportOfSBEM.php. [14] Margulis, L., 1998, Symbiotic Planet. A New Look at Evolution (Amherst: Sciencewriters). [15] Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W., 1999, From molecular to modular cell biology, Nature, 402, C47-C52. [16] Mamontov, E., Koptioug, A.V. and Psiuk-Maksymowicz, K., 2006, The minimal, phase-transition model for the cell- number maintenance by the hyperplasia-extended homeorhesis, Acta Biotheoretica, 54, 44 pp., (no. 2, May-June, accepted). [17] Psiuk-Maksymowicz, K. and Mamontov, E., 2005, The time-slices method for rapid solving the Cauchy problem for nonlinear reaction-diffusion equations in the competition of homeorhesis with genotoxically activated hyperplasia, In: European Conference on Mathematical and Theoretical Biology - ECMTB05 (July 18-22, 2005) Book of Abstracts, Vol.1 (Dresden: Center for Information Services and High Performance Computing, Dresden Univ. Technol.), p. 429 (http://www.ecmtb05.org/). [18] Psiuk-Maksymowicz, K. and Mamontov, E., 2006, The homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiation therapy, submitted. [19] Mamontov, E., 2005, Nonstationary invariant distributions and the hydrodynamic-style generalization of the Kolmogorov-forward/Fokker-Planck equation, Appl. Math. Lett. 18 (9) 976-982.
  •  
2.
  •  
3.
  • Lesch, Christine, et al. (författare)
  • A role for Hemolectin in coagulation and immunity in Drosophila melanogaster
  • 2007
  • Ingår i: Developmental and Comparative Immunology. - : Elsevier BV. - 0145-305X .- 1879-0089. ; 31:12, s. 1255-1263
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemolectin has been identified as a candidate clotting factor in Drosophila. We reassessed the domain structure of Hemolectin (Hml) and propose that instead of C-type lectin domains, the two discoidin domains are most likely responsible for the protein's lectin activity. We also tested Hml's role in coagulation and immunity in Drosophila. Here we describe the isolation of a new hml allele in a forward screen for coagulation mutants, and our characterization of this and two other hml alleles, one of which is a functional null. While loss of Hml had strong effects on larval hemolymph coagulation ex vivo, mutant larvae survived wounding. Drosophila thus possesses redundant hemostatic mechanisms. We also found that loss of Hml in immune-handicapped adults rendered them more sensitive to Gram(-) bacteria infection. This demonstrates an immunological role of this clotting protein and reinforces the importance of the clot in insect immunity.
  •  
4.
  • Agianian, Bogos, et al. (författare)
  • Preliminary characterization of hemolymph coagulation in Anopheles gambiae larvae
  • 2007
  • Ingår i: Developmental and Comparative Immunology. - : Elsevier BV. - 0145-305X .- 1879-0089. ; 31:9, s. 879-888
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemolymph coagulation is a first response to injury, impeding infection, and ending bleeding. Little is known about its molecular basis in insects, but clotting factors have been identified in the fruit fly Drosophila melanogaster. Here, we have begun to study coagulation in the aquatic larvae of the malaria vector mosquito Anopheles gambiae using methods developed for Drosophila. A delicate clot was seen by light microscopy, and pullout and proteomic analysis identified phenoloxidase and apolipophorin-I as major candidate clotting factors. Electron microscopic analysis confirmed clot formation and revealed it contains fine molecular sheets, most likely a result of lipophorin assembly. Phenoloxidase appears to be more critical in clot formation in Anopheles than in Drosophila. The Anopheles larval clot thus differs in formation, structure, and composition from the clot in Drosophila, confirming the need to study coagulation in different insect species to learn more about its evolution and adaptation to different lifestyles.
  •  
5.
  •  
6.
  • Puhar, Andrea, 1978-, et al. (författare)
  • Anthrax edema toxin modulates PKA- and CREB-dependent signaling in two phases
  • 2008
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Anthrax edema toxin (EdTx) is an adenylate cyclase which operates in the perinuclear region of host cells. However, the action of EdTx is poorly understood, especially at molecular level. The ability of EdTx to modulate cAMP-dependent signaling was studied in Jurkat T cells and was compared with that of other cAMP-rising agents: Bordetella pertussis adenylate cyclase toxin, cholera toxin and forskolin.METHODOLOGY/PRINCIPAL FINDINGS: EdTx caused a prolonged increase of the intracellular cAMP concentration. This led to nuclear translocation of the cAMP-dependent protein kinase (PKA) catalytic subunit, phosphorylation of cAMP response element binding protein (CREB) and expression of a reporter gene under control of the cAMP response element. Neither p90 ribosomal S6 kinase nor mitogen- and stress-activated kinase, which mediate CREB phosphorylation during T cell activation, were involved. The duration of phospho-CREB binding to chromatin correlated with the spatio-temporal rise of cAMP levels. Strikingly, EdTx pre-treated T cells were unresponsive to other stimuli involving CREB phosphorylation such as addition of forskolin or T cell receptor cross-linking.CONCLUSIONS/SIGNIFICANCE: We concluded that, in a first intoxication phase, EdTx induces PKA-dependent signaling, which culminates in CREB phosphorylation and activation of gene transcription. Subsequently CREB phosphorylation is impaired and therefore T cells are not able to respond to cues involving CREB. The present data functionally link the perinuclear localization of EdTx to its intoxication mechanism, indicating that this is a specific feature of its intoxication mechanism.
  •  
7.
  •  
8.
  •  
9.
  • Hadzic, Radinka, et al. (författare)
  • α1-Antitrypsin inhibits Moraxella catarrhalis MID protein-induced tonsillar B cell proliferation and IL-6 release
  • 2006
  • Ingår i: Immunology Letters. - 0165-2478 .- 1879-0542. ; 102:2, s. 141-147
  • Tidskriftsartikel (refereegranskat)abstract
    • α1-Antitrypsin (AAT) is a major circulating and tissues inhibitor of serine proteinases implicated in the regulation of inflammation and host defence. There is now increasing evidence that AAT may also exhibit anti-inflammatory activities independent of its protease inhibitor function. This study was undertaken to investigate the effects of native (inhibitory) and polymerized (non-inhibitory) forms of AAT on MID (Moraxella IgD binding protein)-induced human tonsillar B cell activation in vitro. We found that 0.5 μg/ml MID induces B cell proliferation and stimulates IL-6 release (p < 0.001) relative to non-stimulated controls. Both native and polymerized AAT (0.5 mg/ml) inhibited MID-stimulated B cell proliferation in a similar manner (by 70%, p < 0.001), whereas MID-induced IL-6 release was more strongly suppressed by polymerized (9.9-fold, p < 0.001) as compared to native AAT (2.8-fold, p < 0.01). Electrophoretic analysis of cell culture media did not indicate any interaction between AAT and MID, and flow cytometry data showed no competition for the same receptor. The effects of AATs were observed whether added together with MID or 2 h after MID-addition to cell cultures. Thus, our data demonstrate that AAT inhibits MID-induced B cell activation in vitro that is unrelated to its protease inhibitory activity and is not dependent on MID binding to the cell surface.
  •  
10.
  • Mamontov, Eugen, 1955, et al. (författare)
  • Oncogenic hyperplasia caused by combination of various factors: A decision-support software for radionuclide therapy
  • 2007
  • Ingår i: Workshop "Mathematical Modelling and Analysis of Cancer Invasion of Tissues", Mar 26, 2007 - Mar 30, 2007, Dundee, Scotland.
  • Konferensbidrag (refereegranskat)abstract
    • The present work deals with the software based on the PhasTraM model [1] for oncogenic hyperplasia, the first stage of formation of any solid tumor. The work generalizes the related results of [2]-[6] and discusses application of the software for decision support in radionuclide therapy. The software capabilities to allow for combinations of various causes of oncogeny are emphasized. The causes comprise inflammation, immune dysfunction, and chronic psychological stress. The immune dysfunction is represented with hypogammaglobulenimia expressed in terms of the concentration of the immunoglobulin-G molecules. The level of chronic pychological stress is described with the concentration of the interleukin-6 molecules. The work considers how application of the software can support decisions on the specific radionuclide-therapy setting depending on the tissue-, organ-, and patient-specific data. This is illustrated by a number of numerical-simulation results, also the ones which include the effects of common and fractionation-based radionuclide-therapy modalities. A proper attention is paid to how specifically the input data can be prepared by prospective users of the software, i.e. the specialists who apply radionuclide therapy. The work also formulates a few directions for future research in connection with the features of the everyday work of the prospective users. REFERENCES: [1] E. Mamontov, K. Psiuk-Maksymowicz, A. Koptioug, 2006, Stochastic mechanics in the context of the properties of living systems, Mathl Comput. Modelling, 44(7-8) 595-607. [2] E. Mamontov, A. V. Koptioug, K. Psiuk-Maksymowicz, 2006, The minimal, phase-transition model for the cell-number maintenance by the hyperplasia-extended homeorhesis, Acta Biotheoretica, 54(2) 61-101. [3] K. Psiuk-Maksymowicz and E. Mamontov, 2006, The homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiotherapy, Mathl Comput. Modelling, Special Issue
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 201
Typ av publikation
tidskriftsartikel (156)
doktorsavhandling (22)
konferensbidrag (12)
licentiatavhandling (6)
forskningsöversikt (4)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (166)
övrigt vetenskapligt/konstnärligt (35)
Författare/redaktör
Hellman, Lars (22)
Hammarström, Sten (14)
Hammarström, Marie-L ... (13)
Söderhäll, Irene (11)
Söderhäll, Kenneth (11)
Troye-Blomberg, Mari ... (8)
visa fler...
Troye-Blomberg, Mari ... (7)
James, Peter (7)
Belov, Katherine (7)
Pivarcsi, Andor (7)
Levander, Fredrik (6)
Krogh, Morten (6)
Ohlin, Mats (6)
Sverremark-Ekström, ... (6)
Häkkinen, Jari (5)
Baranov, Vladimir (5)
Kemény, Lajos (5)
Berzins, Klavs (4)
Nordberg Karlsson, E ... (4)
Pejler, Gunnar (4)
Nilsson Ekdahl, Kris ... (4)
Nilsson, Bo (4)
Hernell, Olle (4)
Dushay, Mitchell S. (4)
Fahlgren, Anna (4)
Danielsson, Åke (4)
Sverremark-Ekström, ... (4)
Berzins, Klavs, Prof ... (4)
Miller, Robert D (4)
Mamontov, Eugen, 195 ... (4)
Borrebaeck, Carl (3)
Uhlén, Mathias (3)
Holst, Olle (3)
Alenius, Harri (3)
Ludvigsson, Johnny (3)
Vaarala, Outi (3)
Ilonen, Jorma (3)
Lecusay, Robert, 197 ... (3)
Aveskogh, Maria (3)
Jiravanichpaisal, Pi ... (3)
Apweiler, Rolf (3)
Ahlborg, Niklas (3)
Eisenacher, Martin (3)
Benson, Mikael, 1954 (3)
Bas, Anna (3)
Schweda, Elke K H (3)
Cooper, D.W. (3)
Pivarcsi, A (3)
Shor-Posner, G. (3)
Psiuk-Maksymowicz, K ... (3)
visa färre...
Lärosäte
Uppsala universitet (61)
Stockholms universitet (47)
Umeå universitet (29)
Lunds universitet (26)
Karolinska Institutet (25)
Göteborgs universitet (17)
visa fler...
Linköpings universitet (15)
Södertörns högskola (13)
Örebro universitet (12)
Kungliga Tekniska Högskolan (10)
Jönköping University (9)
Linnéuniversitetet (7)
Chalmers tekniska högskola (5)
Sveriges Lantbruksuniversitet (3)
Högskolan i Halmstad (2)
Högskolan Kristianstad (1)
Mälardalens universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (201)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (200)
Medicin och hälsovetenskap (70)
Teknik (9)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy