SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Kemi) hsv:(Analytisk kemi) srt2:(2020-2025)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Kemi) hsv:(Analytisk kemi) > (2020-2025)

  • Resultat 1-10 av 948
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sauer, Christopher, 1993 (författare)
  • Green Aromatics: Catalytic Valorisation of bio-derived 2,5-dimethylfuran over Zeolites and Zeotypes
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis discusses the use of biomass as a potentially green feedstock for the chemical industry in the urgent shift away from fossil resources. I elaborate on reasons why we cannot afford to burn virgin biomass for energy production, among them a variety of ecosystem services that forests and other lands provide. In addition, the utilisation of biomass should be focused on products that sequester and lock away carbon for more extended periods, e.g. timber, materials and chemicals. In particular, biomass can be used as an alternative "carbon neutral" feedstock for the chemical industry, where we can preserve the already existing chemical complexity in the bio-based molecules. One example is the upgrading of furans to benzene, toluene and xylene (BTX) aromatics with the help of zeolite catalysis. These aromatics are important commodity chemicals, where the shift to a bio-based resource could make use of already existing knowledge, catalyst and production infrastructure. However, research is necessary to understand these new feedstock molecules and their interaction with the catalysts and to enable the design of applicable catalysts. In order to study the interaction of the furans, in particular 2,5-dimethylfuran (2,5-dmf), I describe and discuss the development of an analytical methodology that utilises infrared spectroscopy and mass spectrometry for the on-line identification and quantification of product molecules during catalytic reactions. This on-line analysis method is then applied to the catalytic conversion of 2,5-dmf to aromatics over a range of zeolite and zeotype catalysts. In-depth studies with ammonia as a probe molecule of the catalytic active acid sites, as well as temperature programmed experiments with ammonia and 2,5-dmf give insights into product distribution, selectivity changes and deactivation of the catalyst. For example, olefins and aromatics are initially preferred products, while with increasing time on stream, the isomerisation of 2,5-dmf becomes dominant. The incorporation of Ga into the zeotype framework, resulting in a Ga-Silicate, shows how targeted catalyst design can increase overall aromatics production. This catalyst is also suitable for selective isomerisation of 2,5-dmf to 2,4-dimethylfuran, which has a rare substitution pattern. Finally, itwas found that the most valuable of BTX,  p -xylene, can be produced more selectively when 2,5-dmf is pre-adsorbed onto zeolite ZSM-5 and then released during a temperature programmed product desorption.
  •  
2.
  • Guo, Y. D., et al. (författare)
  • Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:17, s. 11323-11346
  • Tidskriftsartikel (refereegranskat)abstract
    • Nighttime NO3-initiated oxidation of biogenic volatile organic compounds (BVOCs) such as monoterpenes is important for the atmospheric formation and growth of secondary organic aerosol (SOA), which has significant impact on climate, air quality, and human health. In such SOA formation and growth, highly oxygenated organic molecules (HOM) may be crucial, but their formation pathways and role in aerosol formation have yet to be clarified. Among monoterpenes, limonene is of particular interest for its high emission globally and high SOA yield. In this work, HOM formation in the reaction of limonene with nitrate radical (NO3) was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). About 280 HOM products were identified, grouped into 19 monomer families, 11 dimer families, and 3 trimer families. Both closed-shell products and open-shell peroxy radicals (RO2 center dot) 2 were observed, and many of them have not been reported previously. Monomers and dimers accounted for 47% and 47% of HOM concentrations, respectively, with trimers making up the remaining 6 %. In the most abundant monomer families, C10H15-17NO6-14, carbonyl products outnumbered hydroxyl products, indicating the importance of RO2 center dot termination by unimolecular dissociation. Both RO2 center dot autoxidation and alkoxy-peroxy pathways were found to be important processes leading to HOM. Time-dependent concentration profiles of monomer products containing nitrogen showed mainly second-generation formation patterns. Dimers were likely formed via the accretion reaction of two monomer RO2 center dot , and HOM-trimers via the accretion reaction between monomer RO2 center dot and dimer RO2 center dot. Trimers are suggested to play an important role in new particle formation (NPF) observed in our experiment. A HOM yield of 1.5%(+1.7%)(-0.7%) was estimated considering only first-generation products. SOA mass growth could be reasonably explained by HOM condensation on particles assuming irreversible uptake of ultra-low volatility organic compounds (ULVOCs), extremely low volatility organic compounds (ELVOCs), and low volatility organic compounds (LVOCs). This work provides evidence for the important role of HOM formed via the limonene +NO3 reaction in NPF and growth of SOA particles.
  •  
3.
  •  
4.
  • Armanious, Antonius, 1981, et al. (författare)
  • Determination of Nanosized Adsorbate Mass in Solution Using Mechanical Resonators: Elimination of the So Far Inseparable Liquid Contribution
  • 2021
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:41, s. 22733-22746
  • Tidskriftsartikel (refereegranskat)abstract
    • Assumption-free mass quantification of nanofilms, nanoparticles, and (supra)molecular adsorbates in a liquid environment remains a key challenge in many branches of science. Mechanical resonators can uniquely determine the mass of essentially any adsorbate; yet, when operating in a liquid environment, the liquid dynamically coupled to the adsorbate contributes significantly to the measured response, which complicates data interpretation and impairs quantitative adsorbate mass determination. Employing the Navier-Stokes equation for liquid velocity in contact with an oscillating surface, we show that the liquid contribution for rigid systems can be eliminated by measuring the response in solutions with identical kinematic viscosity but different densities. Guided by this insight, we used the quartz crystal microbalance (QCM), one of the most widely employed mechanical resonators, to experimentally demonstrate that the kinematic-viscosity matching can be utilized to quantify the dry mass of rigid and in many cases also nonrigid adsorbate systems, including, e.g., rigid nanoparticles, tethered biological nanoparticles (lipid vesicles), as well as highly hydrated polymeric films. For all the adsorbates, the dry mass determined using the kinematic-viscosity matching was within the uncertainty limits of the corresponding mass determined using complementary methods, i.e., QCM in air, scanning electron microscopy, surface plasmon resonance, and theoretical estimations. The same approach applied to the simultaneously measured energy dissipation made it possible to quantify the mechanical properties of the adsorbate and its attachment to the surface, as demonstrated by, for example, probing the hydrodynamic stabilization induced by nanoparticle crowding. In addition to a unique means to quantify the liquid contribution to the measured response of mechanical resonators, we also envision that the kinematic-viscosity-matching approach will open up applications beyond mass determination, including a new means to investigate orientation, spatial distribution, and binding strength of adsorbates without the need for complementary techniques.
  •  
5.
  • Brownwood, B., et al. (författare)
  • Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO3-Initiated Oxidation of Isoprene under Varied Chemical Regimes
  • 2021
  • Ingår i: Acs Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 5:4, s. 785-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO(3)Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 +/- 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with similar to 50 mu g m(-3) inorganic seed aerosol and 2-5 mu g m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically similar to 100 ppb O-3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K-p similar to 10(-3) m(3) mu g(-1)), indicating an average volatility corresponding to a C-5 hydroxy hydroperoxy nitrate.
  •  
6.
  • Carlsson, P. T. M., et al. (författare)
  • Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
  • 2023
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:5, s. 3147-3180
  • Tidskriftsartikel (refereegranskat)abstract
    • The gas-phase reaction of isoprene with the nitrate radical (NO3) was investigated in experiments in the outdoor SAPHIR chamber under atmospherically relevant conditions specifically with respect to the chemical lifetime and fate of nitrato-organic peroxy radicals (RO2). Observations of organic products were compared to concentrations expected from different chemical mechanisms: (1) the Master Chemical Mechanism, which simplifies the NO3 isoprene chemistry by only considering one RO2 isomer; (2) the chemical mechanism derived from experiments in the Caltech chamber, which considers different RO2 isomers; and (3) the FZJ-NO3 isoprene mechanism derived from quantum chemical calculations, which in addition to the Caltech mechanism includes equilibrium reactions of RO(2 )isomers, unimolecular reactions of nitrate RO(2 )radicals and epoxidation reactions of nitrate alkoxy radicals. Measurements using mass spectrometer instruments give evidence that the new reactions pathways predicted by quantum chemical calculations play a role in the NO3 oxidation of isoprene. Hydroperoxy aldehyde (HPALD) species, which are specific to unimolecular reactions of nitrate RO2, were detected even in the presence of an OH scavenger, excluding the possibility that concurrent oxidation by hydroxyl radicals (OH) is responsible for their formation. In addition, ion signals at masses that can be attributed to epoxy compounds, which are specific to the epoxidation reaction of nitrate alkoxy radicals, were detected. Measurements of methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations confirm that the decomposition of nitrate alkoxy radicals implemented in the Caltech mechanism cannot compete with the ring-closure reactions predicted by quantum chemical calculations. The validity of the FZJ-NO3 isoprene mechanism is further supported by a good agreement between measured and simulated hydroxyl radical (OH) reactivity. Nevertheless, the FZJ-NO3 isoprene mechanism needs further investigations with respect to the absolute importance of unimolecular reactions of nitrate RO2 and epoxidation reactions of nitrate alkoxy radicals. Absolute concentrations of specific organic nitrates such as nitrate hydroperoxides would be required to experimentally determine product yields and branching ratios of reactions but could not be measured in the chamber experiments due to the lack of calibration standards for these compounds. The temporal evolution of mass traces attributed to product species such as nitrate hydroperoxides, nitrate carbonyl and nitrate alcohols as well as hydroperoxy aldehydes observed by the mass spectrometer instruments demonstrates that further oxidation by the nitrate radical and ozone at atmospheric concentrations is small on the timescale of one night (12 h) for typical oxidant concentrations. However, oxidation by hydroxyl radicals present at night and potentially also produced from the decomposition of nitrate alkoxy radicals can contribute to their nocturnal chemical loss.
  •  
7.
  •  
8.
  • Salvador, Christian Mark, 1989, et al. (författare)
  • Ambient nitro-aromatic compounds - biomass burning versus secondary formation in rural China
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:3, s. 1389-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitro-aromatic compounds (NACs) were measured hourly at a rural site in China during wintertime to monitor the changes due to local and regional impacts of biomass burning (BB). Concurrent and continuous measurements of the concentrations of 16 NACs in the gas and particle phases were performed with a time-of-flight chemical ionization mass spectrometer (CIMS) equipped with a Filter Inlet for Gases and AEROsols (FIGAERO) unit using iodide as the reagent ion. NACs accounted for <2 % of the mass concentration of organic matter (OM) and total particulate matter (PM), but the total particle mass concentrations of these compounds can reach as high as 1000 ng m(-3) (299 ng m(-3) avg), suggesting that they may contribute significantly to the radiative forcing effects of atmospheric particles. Levels of gas-phase NACs were highest during the daytime (15:00-16:00 local time, LT), with a smaller night-time peak around 20:00LT. Box-model simulations showed that this occurred because the rate of NAC production from gas-phase sources exceeded the rate of loss, which occurred mainly via the OH reaction and to a lesser degree via photolysis. Data gathered during extended periods with high contributions from primary BB sources (resulting in 40 %-60 % increases in NAC concentrations) were used to characterize individual NACs with respect to gas-particle partitioning and the contributions of regional secondary processes (i.e. photochemical smog). On days without extensive BB, secondary formation was the dominant source of NACs, and NAC levels correlated strongly with the ambient ozone concentration. Analyses of individual NACs in the regionally aged plumes sampled on these days allowed precursors such as phenol and catechol to be linked to their NAC derivatives (i.e. nitrophenol and nitrocatechol). Correlation analysis using the high time resolution data and box-model simulation results constrained the relationships between these compounds and demonstrated the contribution of secondary formation processes. Furthermore, 13 of 16 NACS were classified according to primary or secondary formation process. Primary emission was the dominant source (accounting for 60 %-70 % of the measured concentrations) of 5 of the 16 studied NACs, but secondary formation was also a significant source. Photochemical smog thus has important effects on brown carbon levels even during wintertime periods dominated by primary air pollution in rural China.
  •  
9.
  • Voliotis, A., et al. (författare)
  • Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:21, s. 14147-14175
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive chamber investigation of photochemical secondary organic aerosol (SOA) formation and transformation in mixtures of anthropogenic (o-cresol) and biogenic (alpha-pinene and isoprene) volatile organic compound (VOC) precursors in the presence of NOx and inorganic seed particles was conducted. To enable direct comparison across systems, the initial concentration (hence reactivity) of the systems towards the dominant OH oxidant was adjusted. Comparing experiments conducted in single-precursor systems at various initial reactivity levels (referenced to a nominal base case VOC concentration, e.g. halving the initial concentration for a 1/2 initial reactivity experiment) as well as their binary and ternary mixtures, we show that the molecular interactions from the mixing of the precursors can be investigated and discuss challenges in their interpretation. The observed average SOA particle mass yields (the organic particle mass produced for a mass of VOC consumed) in descending order were found for the following systems: alpha-pinene (32 +/- 7 %), alpha-pinene-o-cresol (28 +/- 9 %), alpha-pinene at 1/2 initial reactivity (21 +/- 5 %), alpha-pinene-isoprene (16 +/- 1 %), alpha-pinene at 1/3 initial reactivity (15 +/- 4 %), o-cresol (13 +/- 3 %), alpha-pinene-o-cresol-isoprene (11 +/- 4 %), o-cresol at 1/2 initial reactivity (11 +/- 3 %), o-cresol-isoprene (6 +/- 2 %), and isoprene (0 +/- 0 %). We find a clear suppression of the SOA mass yield from alpha-pinene when it is mixed with isoprene, whilst no suppression or enhancement of SOA particle yield from o-cresol was found when it was similarly mixed with isoprene. The alpha-pinene-o-cresol system yield appeared to be increased compared to that calculated based on the additivity, whilst in the alpha-pinene-o-cresol-isoprene system the measured and predicted yields were comparable. However, in mixtures in which more than one precursor contributes to the SOA particle mass it is unclear whether changes in the SOA formation potential are attributable to physical or chemical interactions, since the reference basis for the comparison is complex. Online and offline chemical composition as well as SOA particle volatility, water uptake, and "phase" behaviour measurements that were used to interpret the SOA formation and behaviour are introduced and detailed elsewhere.
  •  
10.
  • Wang, Xuan, et al. (författare)
  • Effects of Anthropogenic Chlorine on PM2.5 and Ozone Air Quality in China
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:16, s. 9908-9916
  • Tidskriftsartikel (refereegranskat)abstract
    • China has large anthropogenic chlorine emissions from agricultural fires, residential biofuel, waste incineration, coal combustion, and industrial processes. Here we quantify the effects of chlorine on fine particulate matter (PM2.5) and ozone air quality across China by using the GEOS-Chem chemical transport model with comprehensive anthropogenic emissions and detailed representation of gas-phase and heterogeneous chlorine chemistry. Comparison of the model to observed ClNO2, HCl, and particulate Cl- concentrations shows that reactive chlorine in China is mainly anthropogenic, unlike in other continental regions where it is mostly of marine origin. The model is successful in reproducing observed concentrations and their distributions, lending confidence in the anthropogenic chlorine emission estimates and the resulting chemistry. We find that anthropogenic chlorine emissions increase total inorganic PM2.5 by as much as 3.2 μg m-3 on an annual mean basis through the formation of ammonium chloride, partly compensated by a decrease of nitrate because ClNO2 formation competes with N2O5 hydrolysis. Annual mean MDA8 surface ozone increases by up to 1.9 ppb, mainly from ClNO2 chemistry, while reactivities of volatile organic compounds increase (by up to 48% for ethane). We find that a sufficient representation of chlorine chemistry in air quality models can be obtained from consideration of HCl/Cl- thermodynamics and ClNO2 chemistry, because other more complicated aspects of chlorine chemistry have a relatively minor effect.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 948
Typ av publikation
tidskriftsartikel (775)
doktorsavhandling (55)
forskningsöversikt (55)
konferensbidrag (30)
rapport (12)
bokkapitel (12)
visa fler...
licentiatavhandling (5)
konstnärligt arbete (4)
annan publikation (3)
proceedings (redaktörskap) (1)
visa färre...
Typ av innehåll
refereegranskat (850)
övrigt vetenskapligt/konstnärligt (96)
populärvet., debatt m.m. (2)
Författare/redaktör
Crespo, Gaston A., 1 ... (25)
Hallquist, Mattias, ... (19)
Cuartero, Maria, PhD ... (19)
El-Seedi, Hesham (16)
Zou, Xiaobo (16)
Turner, Charlotta (16)
visa fler...
Guo, Zhiming (16)
Fornstedt, Torgny, 1 ... (16)
Samuelsson, Jörgen, ... (16)
Bergquist, Jonas (15)
Yeung, Leo W. Y., 19 ... (14)
Zeiner, Michaela, 19 ... (14)
Fletcher, John S. (12)
Mikkola, Jyri-Pekka (11)
Malmberg, Per, 1974 (11)
Ahrens, Lutz (11)
Emmer, Åsa (11)
Ekberg, Christian, 1 ... (10)
Lanekoff, Ingela, Pr ... (10)
Yin, Limei (10)
Sandahl, Margareta (9)
Ewing, Andrew G, 195 ... (9)
Kärrman, Anna, 1975- (9)
Hawkes, Jeffrey A. (9)
Oudbashi, Omid, 1978 (9)
Tesfalidet, Solomon (8)
Andrén, Per E., Prof ... (8)
Sellergren, Börje (8)
Ruzgas, Tautgirdas (8)
Fiedler, Heidelore, ... (7)
Mak, Wing Cheung (7)
Enmark, Martin, 1984 ... (7)
Lesko, Marek (7)
Beijnen, Jos H (7)
Wiorek, Alexander (7)
Roseboom, Ignace C (7)
Malyshev, Dmitry (7)
Rosing, Hilde (7)
Nemet, Ivan (7)
Shleev, Sergey (6)
Pettersson, Curt (6)
Hedeland, Mikael (6)
Lanekoff, Ingela, As ... (6)
Palermo, Vincenzo, 1 ... (6)
Wang, Thanh, 1979- (6)
Golovko, Oksana (6)
Cuartero, Maria (6)
Chen, Quansheng (6)
Hu, Guangzhi (6)
Duncan, Kyle D. (6)
visa färre...
Lärosäte
Uppsala universitet (171)
Chalmers tekniska högskola (166)
Lunds universitet (106)
Kungliga Tekniska Högskolan (105)
Göteborgs universitet (99)
Umeå universitet (92)
visa fler...
Linköpings universitet (89)
Sveriges Lantbruksuniversitet (59)
Stockholms universitet (58)
Örebro universitet (54)
Karolinska Institutet (30)
Malmö universitet (26)
Luleå tekniska universitet (23)
Karlstads universitet (18)
RISE (15)
Mittuniversitetet (9)
IVL Svenska Miljöinstitutet (6)
Linnéuniversitetet (5)
Högskolan Kristianstad (2)
Högskolan i Gävle (2)
Högskolan Dalarna (2)
Naturhistoriska riksmuseet (2)
VTI - Statens väg- och transportforskningsinstitut (2)
Jönköping University (1)
Naturvårdsverket (1)
Södertörns högskola (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (932)
Svenska (12)
Kroatiska (2)
Portugisiska (1)
Tjeckiska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (948)
Teknik (148)
Medicin och hälsovetenskap (95)
Lantbruksvetenskap (21)
Humaniora (9)
Samhällsvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy