SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Kemi) hsv:(Materialkemi) srt2:(2020-2024)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Kemi) hsv:(Materialkemi) > (2020-2024)

  • Resultat 1-10 av 3439
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maurina Morais, Eduardo, 1989, et al. (författare)
  • Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids
  • 2022
  • Ingår i: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322. ; 360
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98–99% m/m) and dry (128–553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is constructed of only glass and chemically resistant polymer (PTFE and PVDF) parts, which avoid other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). This process is described in detail in the paper as well as in a video. The resulting ionic liquids were carefully analyzed by spectroscopic and thermal methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
2.
  • Maurina Morais, Eduardo, 1989 (författare)
  • Synthesis of protic ionic liquids. Challenges and solutions for the synthesis of pure compounds.
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The urgent need to diversify our energy matrix is responsible for a renewed interest in fuel cell technology, which can use hydrogen gas, a renewable green fuel, as an energy source. This technology is currently a commercially available option, however, it still requires technological improvements before it can be widely used for different applications. One way this technology could potentially be improved is by increasing its temperature range of operation by developing new, anhydrous proton conducting materials. Protic ionic liquids, which are organic salts with low melting temperatures, are interesting candidates for this application, since they can conduct protons in the operational conditions of fuel cells and without the need of water. These compounds can be synthesized by a simple acid-base neutralization reaction, but certain considerations must be taken in order to obtain high quality (dry and pure) protic ionic liquids. In this thesis, a series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98-99% m/m) and dry (128-553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is consists of only glass and chemically resistant polymer(PTFE and PVDF) parts, which avoids other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). The resulting ionic liquids were carefully analyzed by spectroscopic and thermal analysis methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
3.
  • Sauer, Christopher, 1993 (författare)
  • Green Aromatics: Catalytic Valorisation of bio-derived 2,5-dimethylfuran over Zeolites and Zeotypes
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis discusses the use of biomass as a potentially green feedstock for the chemical industry in the urgent shift away from fossil resources. I elaborate on reasons why we cannot afford to burn virgin biomass for energy production, among them a variety of ecosystem services that forests and other lands provide. In addition, the utilisation of biomass should be focused on products that sequester and lock away carbon for more extended periods, e.g. timber, materials and chemicals. In particular, biomass can be used as an alternative "carbon neutral" feedstock for the chemical industry, where we can preserve the already existing chemical complexity in the bio-based molecules. One example is the upgrading of furans to benzene, toluene and xylene (BTX) aromatics with the help of zeolite catalysis. These aromatics are important commodity chemicals, where the shift to a bio-based resource could make use of already existing knowledge, catalyst and production infrastructure. However, research is necessary to understand these new feedstock molecules and their interaction with the catalysts and to enable the design of applicable catalysts. In order to study the interaction of the furans, in particular 2,5-dimethylfuran (2,5-dmf), I describe and discuss the development of an analytical methodology that utilises infrared spectroscopy and mass spectrometry for the on-line identification and quantification of product molecules during catalytic reactions. This on-line analysis method is then applied to the catalytic conversion of 2,5-dmf to aromatics over a range of zeolite and zeotype catalysts. In-depth studies with ammonia as a probe molecule of the catalytic active acid sites, as well as temperature programmed experiments with ammonia and 2,5-dmf give insights into product distribution, selectivity changes and deactivation of the catalyst. For example, olefins and aromatics are initially preferred products, while with increasing time on stream, the isomerisation of 2,5-dmf becomes dominant. The incorporation of Ga into the zeotype framework, resulting in a Ga-Silicate, shows how targeted catalyst design can increase overall aromatics production. This catalyst is also suitable for selective isomerisation of 2,5-dmf to 2,4-dimethylfuran, which has a rare substitution pattern. Finally, itwas found that the most valuable of BTX,  p -xylene, can be produced more selectively when 2,5-dmf is pre-adsorbed onto zeolite ZSM-5 and then released during a temperature programmed product desorption.
  •  
4.
  • Artemenko, A., et al. (författare)
  • Reference XPS spectra of amino acids
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In this report we present XPS data for five amino acids (AAs) (tryptophan, methionine, glutamine, glutamic acid, and arginine) with different side chain groups measured in solid state (powder form). The theoretically and experimentally obtained chemical structure of AAs are compared. Here, we analyse and discuss C 1 s, N 1 s, O 1s and S 2p core level binding energies, FWHMs, atomic concentrations of the functional groups in AAs. The experimentally obtained and theoretically calculated ratio of atomic concentrations are compared. The zwitterionic nature of methionine and glutamine in solid state was determined from protonated amino groups in N 1s peak and deprotonated carboxylic groups in the C 1s spectrum. The obtained XPS results for AAs well correspond with previously reported data.
  •  
5.
  • Barišić, Antun, et al. (författare)
  • Experimental Data Contributing to the Elusive Surface Charge of Inert Materials in Contact with Aqueous Media
  • 2021
  • Ingår i: Colloids and interfaces. - : MDPI. - 2504-5377. ; 5:1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We studied the charging of inert surfaces (polytetrafluoroethylene, i.e., PTFE; graphite; graphene; and hydrophobic silica) using classical colloid chemistry approaches. Potentiometric titrations showed that these surfaces acquired less charge from proton-related reactions than oxide minerals. The data from batch-type titrations for PTFE powder did not show an effect of ionic strength, which was also in contrast with results for classical colloids. In agreement with classical colloids, the electrokinetic results for inert surfaces showed the typical salt level dependence. In some cases, the point of zero net proton charge as determined from mass and tentatively from acid–base titration differed from isoelectric points, which has also been previously observed, for example by Chibowski and co-workers for ice electrolyte interfaces. Finally, we found no evidence for surface contaminations of our PTFE particles before and after immersion in aqueous solutions. Only in the presence of NaCl-containing solutions did cryo-XPS detect oxygen from water. We believe that our low isoelectric points for PTFE were not due to impurities. Moreover, the measured buffering at pH 3 could not be explained by sub-micromolar concentrations of contaminants. The most comprehensive explanation for the various sets of data is that hydroxide ion accumulation occurred at the interfaces between inert surfaces and aqueous solutions.
  •  
6.
  • Singh, Shivangi, 1996 (författare)
  • Investigating hydrothermal stability and influence of water on the activity of Cu-CHA catalysts for NH3-SCR
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Selective catalytic reduction of nitrogen oxides (NOx) with NH3 as a reducing agent (NH3- SCR) is a leading technology for diesel exhaust emission control. Cu-exchanged zeolites with the chabazite structure (Cu-CHA) have emerged as the preferred catalysts thanks to its high activity and hydrothermal stability. Hydrothermal stability is related to dealumination, i.e. removal of aluminum from the zeolite framework to form extraframework aluminum, at high temperatures in the presence of water vapor. Copperexchanged chabazite (Cu-CHA) zeolites have higher hydrothermal stability compared to H-chabazite (H-CHA). To understand the delayed dealumination of Cu-CHA catalysts, we have investigated the reaction paths for dealumination in H-CHA and Cu-CHA using density functional theory (DFT) calculations combined with microkinetic modeling. We find that Cu-CHA and H-CHA follow similar four-step hydrolysis processes, yet the dealumination of Cu-CHA has higher energy barriers, suggesting stabilization of the CHA structure by Cu ions. Furthermore, the preferred reaction product upon complete dealumination of Cu-CHA is a copper-aluminate like species bound to the zeolite framework. The microkinetic analysis quantifies the increased stability of Cu-CHA as compared to H-CHA. In addition to the high-temperature dealumination, we investigated the role of water on low-temperature SCR by experimentally measuring the activity and reaction order of water. The reaction order of water is found to be increasingly negative with increasing water pressure. DFT calculations reveal that water blocks the active Cu-sites and a DFT-based microkinetic model reproduces the measured change of reaction order with water pressure.
  •  
7.
  • Bjerregaard, Joachim, 1996, et al. (författare)
  • Interpretation of H 2 -TPR from Cu-CHA Using First-Principles Calculations
  • 2024
  • Ingår i: Journal of Physical Chemistry C. - 1932-7447 .- 1932-7455. ; 128:11, s. 4525-4534
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature-programmed reduction and oxidation are used to obtain information on the presence and abundance of different species in complex catalytic materials. The interpretation of the temperature-programmed reaction profiles is, however, often challenging. One example is H2 temperature-programmed reduction (H2-TPR) of Cu-chabazite (Cu-CHA), which is a material used for ammonia assisted selective catalytic reduction of NOx (NH3-SCR). The TPR profiles of Cu-CHA consist generally of three main peaks. A peak at 220 °C is commonly assigned to ZCuOH, whereas peaks at 360 and 500 °C generally are assigned to Z2Cu, where Z represents an Al site. Here, we analyze H2-TPR over Cu-CHA by density functional theory calculations, microkinetic modeling, and TPR measurements of samples pretreated to have a dominant Cu species. We find that H2 can react with Cu ions in oxidation state +2, whereas adsorption on Cu ions in +1 is endothermic. Kinetic modeling of the TPR profiles suggests that the 220 °C peak can be assigned to Z2CuOCu and ZCuOH, whereas the peaks at higher temperatures can be assigned to paired Z2Cu and Z2CuHOOHCu species (360 °C) or paired Z2Cu and Z2CuOOCu (500 °C). The results are in good agreement with the experiments and facilitate the interpretation of future TPR experiments.
  •  
8.
  • Feng, Yingxin, 1994 (författare)
  • Reaction kinetics of NH3-SCR over Cu-CHA from first principles
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ammonia-assisted selective catalytic reduction (NH3-SCR) is an advanced technology to reduce nitrogen oxide (NOx) emissions from lean-burn engines. NH3 is added to the exhaust gas and reacts selectively with NOx, forming N2 and H2O. Small-pore Cu-exchanged chabazite (Cu-CHA) is a widely used zeolite-based catalyst for NH3-SCR thanks to its high activity, high selectivity, and durability. However, one issue is the formation of small amounts of nitrous oxide (N2O), which is a strong greenhouse gas. Atomic level understanding is valuable to improve the performance of NH3-SCR catalyst and meet the increasingly stringent emission standards. The state of Cu-CHA during NH3-SCR reaction depends sensitively on the reaction temperature. At low temperatures, Cu-ions are solvated by NH3, forming Cu[(NH3)2]+ complexes, while framework-bound Cu dominates at high temperatures. Experimentally, a non-monotonic behavior in NO conversion is observed with increasing temperature, which reflects a change in the active site. In this thesis, NH3-SCR over Cu-CHA is investigated using density functional theory (DFT) calculations and kinetic simulations. In the low-temperature range (<250℃), a pair of Cu[(NH3)2]+ is required for O2 adsorption to form a Cu-peroxo complex, which is a key Cu-intermediate. The reaction intermediates HONO and H2NNO can be converted to N2 and H2O over Brønsted acid sites. H2NNO is found to be the origin of N2O formation when decomposing over Cu-peroxo species. At high-temperature (>350℃), the proposed reaction mechanism suggests that the reaction proceeds over single framework Cu sites and starts from the co-adsorption of O2 and NO. The main source of N2O formation at high temperatures is suggested to be ammonium nitrate decomposition. By combining the reaction mechanisms for high and low temperatures, the non-monotonic temperature-dependent reaction activity is successfully reproduced. The present work deepens the understanding of the reaction mechanism of NH3-SCR on Cu-CHA in a wide temperature range and provides theoretical support for further improvement of the catalyst performance.
  •  
9.
  • Gogoi, Neeha, et al. (författare)
  • Silyl-Functionalized Electrolyte Additives and Their Reactivitytoward Lewis Bases in Li-Ion Cells br
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 34:8, s. 3831-3838
  • Tidskriftsartikel (refereegranskat)abstract
    • Silyl groups are included in a wide range of electrolyteadditives to enhance the performance of state-of-the-art Li-ion batteries. Arecognized representative thereof is tris-(trimethylsilyl)phosphate(TMSPa) which, along with the similarly structured phosphite, has beenat the center of numerous electrolyte studies. Even though the silyl grouphas already been widely reported to be specifically reactive towardsfluorides, herein, a reactivity towards several Lewis bases typically found inLi-ion cells is postulated and investigated with the aim to establish a moresimplified and generally applicable reaction mechanism thereof. Bothgaseous and electrolyte soluble reactants and products are monitored bycombining nuclear magnetic resonance and injection cell-coupled massspectrometry. Experimental observations are supported by computationalmodels. The results clearly demonstrate that the silyl groups react withwater, hydroxide, and methoxide and thereby detach in a stepwise fashion from the central phosphate in TMSPa. Intermolecularinteraction between TMSPa and the reactants likely facilitates dissolution and lowers the free energy of reaction. Lewis bases are wellknown to trigger side reactions involving both the Li-ion electrode and electrolyte. By effectively scavenging these, the silyl group canbe explained to lower cell impedance and prolong the lifetime of modern Li-ion batteries.
  •  
10.
  • Maurina Morais, Eduardo, 1989 (författare)
  • Exploring new protic ionic liquids: From synthesis to fundamental properties
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The ionic liquid community frequently leverages the selling point that more than a million new ionic liquids could conceivably be created. Nonetheless, the number of commercially available compounds is orders of magnitude lower. This highlights the fact that only a small number of all possible ionic liquids are actively being researched, a reality particularly noticeable in the niche field of protic ionic liquids. In such a scenario, research focusing on the development of even a small number of viable alternatives to the popular alkylammonium- and imidazolium-based cations could potentially have a big impact, by paving the way for the synthesis of new families of ionic liquids. However, for these new alternatives to be widely used by the community, they must be easy to synthesize and have desirable properties. In this thesis, I discuss the challenges that I have encountered and the lessons that I have learned while trying to explore the chemical space of protic ionic liquids. This exploration started with the development of a procedure for the synthesis of pure and dry protic ionic liquids, which was used to make new triazolium-based protic ionic liquids. Additionally, this first work highlights the importance of using air-free techniques to analyze these hygroscopic compounds. Later, these insights were used to develop a new setup for the determination of ionic conductivity in ionic liquids. The latter was used in conjunction with pulsed-field gradient nuclear magnetic resonance diffusion experiments and density functional theory experiments to understand the differences in transport properties between triazolium- and imidazolium-based protic ionic liquids. Finally, we once again turned our attention to the imidazolium cation and explored how simple modifications to its electronic structure, by means of functionalization with electron-withdrawing groups, can enhance its acidity, and how that affects the properties of these nitro- and cyano-functionalized protic ionic liquids. This thesis aims to highlight the importance of developing new methods for the synthesis and analysis of protic ionic liquids, as well as to explore how computational modeling can be used to rationalize the observed differences in the physicochemical properties of these compounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 3439
Typ av publikation
tidskriftsartikel (2962)
doktorsavhandling (163)
forskningsöversikt (152)
konferensbidrag (76)
licentiatavhandling (57)
bokkapitel (13)
visa fler...
rapport (10)
annan publikation (3)
bok (2)
samlingsverk (redaktörskap) (1)
visa färre...
Typ av innehåll
refereegranskat (3150)
övrigt vetenskapligt/konstnärligt (284)
populärvet., debatt m.m. (3)
Författare/redaktör
Ahuja, Rajeev, 1965- (105)
Brandell, Daniel, 19 ... (64)
Younesi, Reza (62)
Primetzhofer, Daniel (61)
Jannasch, Patric (52)
Sun, Licheng, 1962- (52)
visa fler...
Johansson, Patrik, 1 ... (48)
Edström, Kristina, P ... (47)
Roth, Stephan V. (44)
Hagfeldt, Anders (43)
Ågren, Hans (40)
Müller, Christian, 1 ... (33)
Xiong, Shizhao, 1985 (32)
Rosén, Johanna (32)
Hryha, Eduard, 1980 (32)
Matic, Aleksandar, 1 ... (31)
Singh, Deobrat (31)
Vomiero, Alberto (30)
Lundgren, Edvin (28)
Boschloo, Gerrit (28)
Wang, Ergang, 1981 (27)
Palermo, Vincenzo, 1 ... (26)
Nyholm, Leif, 1961- (26)
Liu, Johan, 1960 (25)
Nyborg, Lars, 1958 (25)
Simões dos Reis, Gla ... (25)
Wågberg, Thomas, 197 ... (24)
Hahlin, Maria (24)
Mindemark, Jonas (24)
Schneider, Jochen M. (23)
Gao, Feng (23)
Liu, Yangyang (23)
Lindbergh, Göran, 19 ... (22)
Hans, Marcus (22)
Eklund, Per (22)
Greczynski, Grzegorz (22)
Rensmo, Håkan (21)
Hultman, Lars (20)
Thuvander, Mattias, ... (20)
Palisaitis, Justinas (20)
Sahlberg, Martin, 19 ... (20)
Xu, Xieyu (20)
Kessler, Vadim (19)
Edvinsson, Tomas, Pr ... (19)
Wågberg, Lars, 1956- (19)
Hussain, Tanveer (19)
Hu, Guangzhi (19)
Naylor, Andrew J. (19)
Talyzin, Aleksandr V ... (19)
Zhang, Leiting (19)
visa färre...
Lärosäte
Uppsala universitet (1068)
Chalmers tekniska högskola (938)
Kungliga Tekniska Högskolan (630)
Linköpings universitet (437)
Lunds universitet (300)
Stockholms universitet (208)
visa fler...
Luleå tekniska universitet (174)
Umeå universitet (139)
RISE (113)
Göteborgs universitet (65)
Sveriges Lantbruksuniversitet (64)
Karlstads universitet (37)
Malmö universitet (24)
Mittuniversitetet (23)
Linnéuniversitetet (22)
Karolinska Institutet (22)
Högskolan i Borås (9)
Örebro universitet (7)
Högskolan i Halmstad (6)
Högskolan Väst (4)
Mälardalens universitet (4)
Högskolan Dalarna (3)
Jönköping University (2)
Riksantikvarieämbetet (2)
VTI - Statens väg- och transportforskningsinstitut (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (3431)
Svenska (5)
Franska (1)
Norska (1)
Italienska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3439)
Teknik (1016)
Medicin och hälsovetenskap (42)
Lantbruksvetenskap (15)
Humaniora (11)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy