SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-173182"
 

Sökning: id:"swepub:oai:DiVA.org:uu-173182" > Advanced MEMS Press...

Advanced MEMS Pressure Sensors Operating in Fluids

Anderås, Emil, 1982- (författare)
Uppsala universitet,Fasta tillståndets elektronik
Yantchev, Ventsislav (preses)
Uppsala universitet,Fasta tillståndets elektronik
Katardjiev, Ilia (preses)
Uppsala universitet,Fasta tillståndets elektronik
visa fler...
Olsson, Jörgen (preses)
Uppsala universitet,Fasta tillståndets elektronik
Verona, Enrico (opponent)
Research Area of Rome Tor Vergata, IDASC Institute of Acoustics and Sensors
visa färre...
 (creator_code:org_t)
ISBN 9789155483692
Uppsala : Acta Universitatis Upsaliensis, 2012
Engelska 54 s.
Serie: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 933
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Today’s MEMS technology allows manufacturing of miniaturized, low power sensors that sometimes exceeds the performance of conventional sensors. The pressure sensor market today is dominated by MEMS pressure sensors.In this thesis two different pressure sensor techniques are studied. The first concerns ways to improve the sensitivity in the most commonly occurring pressure sensor, namely such based on the piezoresistive technique. Since the giant piezoresistive effect was observed in silicon nanowires, it was assumed that a similar effect could be expected in nano-thin silicon films. However, it turned out that the conductivity was extremely sensitive to substrate bias and could therefore be controlled by varying the backside potential. Another important parameter was the resistivity time drift. Long time measurements showed a drastic variation in the resistance. Not even after several hours of measurement was steady state reached. The drift is explained by hole injection into the buried oxide as well as existence of mobile charges. The piezoresistive effect was studied and shown to be of the same magnitude as in bulk silicon. Later research has shown the existence of such an effect where the film thickness has to be less than around 20 nm. The second area that has been studied is the pressure sensitivity of in acoustic resonators. Aluminium nitride thin film plate acoustic resonators (FPAR) operating at the lowest-order symmetric (S0), the first-order asymmetric (A1) as well as the first-order symmetric (S1) Lamb modes have been theoretically and experimentally studied in a comparative manner. The S0 Lamb mode is identified as the most pressure sensitive FPAR mode. The theoretical predictions were found to be in good agreement with the experiments. Additionally, the Lamb modes have been tested for their sensitivities to mass loading and their ability to operate in liquids, where the S0 mode showed good results.Finally, the pressure sensitivity in aluminium nitride thin film bulk wave resonators employing c- and tilted c-axis texture has been studied. The c-axis tilted FBAR demonstrates a substantially higher pressure sensitivity compared to its c-axis oriented counterpart. 

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Nyckelord

pressure sensor
piezoresistance
nanofilms
AlN
microacoustic
Lamb wave
thin film
resonator
sensitivity
Teknisk fysik med inriktning mot elektronik
Engineering Science with specialization in Electronics

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy