SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:lup.lub.lu.se:8ad17af0-bb8c-4697-9852-975ccded0348"
 

Search: id:"swepub:oai:lup.lub.lu.se:8ad17af0-bb8c-4697-9852-975ccded0348" > The influence of mi...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

The influence of microstructure on crack propagation in cortical bone at the mesoscale

Gustafsson, Anna (author)
Lund University,Lunds universitet,Avdelningen för Biomedicinsk teknik,Institutionen för biomedicinsk teknik,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Biomedical Engineering,Departments at LTH,Faculty of Engineering, LTH
Wallin, Mathias (author)
Lund University,Lunds universitet,Hållfasthetslära,Institutionen för byggvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Solid Mechanics,Department of Construction Sciences,Departments at LTH,Faculty of Engineering, LTH
Isaksson, Hanna (author)
Lund University,Lunds universitet,Avdelningen för Biomedicinsk teknik,Institutionen för biomedicinsk teknik,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Biomedical Engineering,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
Elsevier BV, 2020
2020
English.
In: Journal of Biomechanics. - : Elsevier BV. - 0021-9290. ; 112
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The microstructure of cortical bone is key for the tissue's high toughness and strength and efficient toughening mechanisms have been identified at the microscale, for example when propagating cracks interact with the osteonal microstructure. Finite element models have been proposed as suitable tools for analyzing the complex link between the local tissue structure and the fracture resistance of cortical bone. However, previous models that could capture realistic crack paths in cortical bone were due to the required computational effort limited to idealized osteon geometries and small (<1 mm2) model domains. The objective of this study was therefore to bridge the gap between experimental and numerical analysis of crack propagation in cortical bone by introducing image-based models at the mesoscale. Tissue orientation maps from high-resolution micro-CT images were used to define the distribution and orientation of weak interfaces in the models. Crack propagation was simulated using the extended finite element method in combination with an interface damage model, previously developed to simulate crack propagation in microstructural osteon models. The results showed that image-based mesoscale models can be used to capture interactions between cracks and microstructure. The simulated crack paths predicted the general trends seen in experiments with more irregular patterns for cracks propagating perpendicular compared to parallel to the osteon orientation. In all, the proposed method enabled an efficient description of the tissue level microstructure, which is a necessity to predict realistic crack paths in cortical bone and is an important step towards simulating crack propagation in bone models in 3D.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Annan maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Other Mechanical Engineering (hsv//eng)

Keyword

Micro-CT
Microstructural orientation
Toughness
XFEM

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Gustafsson, Anna
Wallin, Mathias
Isaksson, Hanna
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Other Mechanical ...
Articles in the publication
Journal of Biome ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view