SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:kth-93681"
 

Sökning: onr:"swepub:oai:DiVA.org:kth-93681" > Modeling activity-d...

Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors

Tigerholm, Jenny (författare)
KTH,Beräkningsbiologi, CB,Stockholm Brain Institute, Stockholm, Sweden
Petersson, Marcus (författare)
KTH,Beräkningsbiologi, CB,Stockholm Brain Institute, Stockholm, Sweden
Obreja, Otilia (författare)
Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg
visa fler...
Lampert, Angelika (författare)
Inst. of Physiol. and Pathophysiology, Friedrich-Alexander-Uni versität Erlangen-Nürnberg
Carr, Richard (författare)
Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg
Schmelz, Martin (författare)
Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg,
Fransén, Erik (författare)
KTH,Beräkningsbiologi, CB,Stockholm Brain Institute, Stockholm, Sweden
visa färre...
 (creator_code:org_t)
American Physiological Society, 2014
2014
Engelska.
Ingår i: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 111:9, s. 1721-1735
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Action potential initiation and conduction along peripheral axons is a dynamic process that displays pronounced activity dependence. In patients with neuropathic pain, differences in the modulation of axonal conduction velocity by activity suggest that this property may provide insight into some of the pathomechanisms. To date, direct recordings of axonal membrane potential have been hampered by the small diameter of the fibers. We have therefore adopted an alternative approach to examine the basis of activity-dependent changes in axonal conduction by constructing a comprehensive mathematical model of human cutaneous C-fibers. Our model reproduced axonal spike propagation at a velocity of 0.69 m/s commensurate with recordings from human C-nociceptors. Activity-dependent slowing (ADS) of axonal propagation velocity was adequately simulated by the model. Interestingly, the property most readily associated with ADS was an increase in the concentration of intra-axonal sodium. This affected the driving potential of sodium currents, thereby producing latency changes comparable to those observed for experimental ADS. The model also adequately reproduced post-action potential excitability changes (i.e., recovery cycles) observed in vivo. We performed a series of control experiments replicating blockade of particular ion channels as well as changing temperature and extracellular ion concentrations. In the absence of direct experimental approaches, the model allows specific hypotheses to be formulated regarding the mechanisms underlying activity-dependent changes in C-fiber conduction. Because ADS might functionally act as a negative feedback to limit trains of nociceptor activity, we envisage that identifying its mechanisms may also direct efforts aimed at alleviating neuronal hyperexcitability in pain patients.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Neurovetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Neurosciences (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Bioinformatik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Bioinformatics (hsv//eng)

Nyckelord

activity-dependent slowing
recovery cycles
mechano-insensitive nociceptor
computer modeling

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy