SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:research.chalmers.se:ea7c7c77-79ba-47c1-ab0f-b507d2559d52"
 

Sökning: onr:"swepub:oai:research.chalmers.se:ea7c7c77-79ba-47c1-ab0f-b507d2559d52" > UNILOGIC: A Novel A...

UNILOGIC: A Novel Architecture for Highly Parallel Reconfigurable Systems

Ioannou, Aggelos D. (författare)
Polytechnion Kritis,Technical University of Crete,Idryma Technologias kai Erevnas (FORTH),Foundation for Research and Technology Hellas (FORTH),Telecommunication Systems Institute
Georgopoulos, Konstantinos (författare)
Telecommunication Systems Institute
Malakonakis, Pavlos (författare)
Synelixis Lyseis Pliroforikis Automatismou & Tilepikoinonion Monoprosopi Epe,Synelixis Lyseis Solutions Ltd,Telecommunication Systems Institute
visa fler...
Pnevmatikatos, Dionisios N. (författare)
National Technical University of Athens (NTUA),Telecommunication Systems Institute
Papaefstathiou, Vasileios, 1980 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Papaefstathiou, Ioannis (författare)
Aristotelio Panepistimio Thessalonikis,Aristotle University of Thessaloniki
Mavroidis, Iakovos (författare)
Idryma Technologias kai Erevnas (FORTH),Foundation for Research and Technology Hellas (FORTH),Telecommunication Systems Institute
visa färre...
 (creator_code:org_t)
2020-09-09
2020
Engelska.
Ingår i: ACM Transactions on Reconfigurable Technology and Systems. - : Association for Computing Machinery (ACM). - 1936-7414 .- 1936-7406. ; 13:4
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • One of the main characteristics of High-performance Computing (HPC) applications is that they become increasingly performance and power demanding, pushing HPC systems to their limits. Existing HPC systems have not yet reached exascale performance mainly due to power limitations. Extrapolating from today's top HPC systems, about 100-200 MWatts would be required to sustain an exaflop-level of performance. A promising solution for tackling power limitations is the deployment of energy-efficient reconfigurable resources (in the form of Field-programmable Gate Arrays (FPGAs)) tightly integrated with conventional CPUs. However, current FPGA tools and programming environments are optimized for accelerating a single application or even task on a single FPGA device. In this work, we present UNILOGIC (Unified Logic), a novel HPC-tailored parallel architecture that efficiently incorporates FPGAs. UNILOGIC adopts the Partitioned Global Address Space (PGAS) model and extends it to include hardware accelerators, i.e., tasks implemented on the reconfigurable resources. The main advantages of UNILOGIC are that (i) the hardware accelerators can be accessed directly by any processor in the system, and (ii) the hardware accelerators can access any memory location in the system. In this way, the proposed architecture offers a unified environment where all the reconfigurable resources can be seamlessly used by any processor/operating system. The UNILOGIC architecture also provides hardware virtualization of the reconfigurable logic so that the hardware accelerators can be shared among multiple applications or tasks. The FPGA layer of the architecture is implemented by splitting its reconfigurable resources into (i) a static partition, which provides the PGAS-related communication infrastructure, and (ii) fixed-size and dynamically reconfigurable slots that can be programmed and accessed independently or combined together to support both line and coarse grain reconfiguration.(1) Finally, the UNILOGIC architecture has been evaluated on a custom prototype that consists of two 1U chassis, each of which includes eight interconnected daughter boards, called Quad-FPGA Daughter Boards (QFDBs); each QFDB supports four tightly coupled Xilinx Zynq Ultrascalei MPSoCs as well as 64 Gigabytes of DDR4 memory, and thus, the prototype features a total of 64 Zynq MPSoCs and 1 Terabyte of memory. We tuned and evaluated the UNILOGIC prototype using both low-level (baremetal) performance tests, as well as two popular real-world HPC applications, one compute-intensive and one data-intensive. Our evaluation shows that UNILOGIC offers impressive performance that ranges from being 2.5 to 400 times faster and 46 to 300 times more energy efficient compared to conventional parallel systems utilizing only high-end CPUs, while it also outperforms GPUs by a factor ranging from 3 to 6 times in terms of time to solution, and from 10 to 20 times in terms of energy to solution.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datorteknik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Inbäddad systemteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Embedded Systems (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Datorsystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Computer Systems (hsv//eng)

Nyckelord

FPGA unification
partial reconfiguration
prototyping
Accelerators

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy