SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Hedman Åsa K)) srt2:(2015-2019)"

Sökning: (WFRF:(Hedman Åsa K)) > (2015-2019)

  • Resultat 11-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Mendelson, Michael M., et al. (författare)
  • Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease : A Mendelian Randomization Approach
  • 2017
  • Ingår i: PLoS Medicine. - : PUBLIC LIBRARY SCIENCE. - 1549-1277 .- 1549-1676. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.
  •  
12.
  • Pfeiffer, Liliane, et al. (författare)
  • DNA methylation of lipid-related genes affects blood lipid levels.
  • 2015
  • Ingår i: Circulation. - 1942-325X .- 1942-3268. ; 8:2, s. 334-42
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction.METHODS AND RESULTS: Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=-0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06-1.25).CONCLUSIONS: Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases.
  •  
13.
  • Wang, Yunzhang, et al. (författare)
  • Comprehensive longitudinal study of epigenetic mutations in aging
  • 2019
  • Ingår i: Clinical Epigenetics. - : BioMed Central. - 1868-7083 .- 1868-7075. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The role of DNA methylation in aging has been widely studied. However, epigenetic mutations, here defined as aberrant methylation levels compared to the distribution in a population, are less understood. Hence, we investigated longitudinal accumulation of epigenetic mutations, using 994 blood samples collected at up to five time points from 375 individuals in old ages.Results: We verified earlier cross-sectional evidence on the increase of epigenetic mutations with age, and identified important contributing factors including sex, CD19+ B cells, genetic background, cancer diagnosis, and technical artifacts. We further classified epigenetic mutations into High/Low Methylation Outliers (HMO/LMO) according to their changes in methylation, and specifically studied methylation sites (CpGs) that were prone to mutate (frequently mutated CpGs). We validated four epigenetically mutated CpGs using pyrosequencing in 93 samples. Furthermore, by using twins, we concluded that the age-related accumulation of epigenetic mutations was not related to genetic factors, hence driven by stochastic or environmental effects.Conclusions: Here we conducted a comprehensive study of epigenetic mutation and highlighted its important role in aging process and cancer development. 
  •  
14.
  • Allum, Fiona, et al. (författare)
  • Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Most genome-wide methylation studies (EWAS) of multifactorial disease traits use targeted arrays or enrichment methodologies preferentially covering CpG-dense regions, to characterize sufficiently large samples. To overcome this limitation, we present here a new customizable, cost-effective approach, methylC-capture sequencing (MCC-Seq), for sequencing functional methylomes, while simultaneously providing genetic variation information. To illustrate MCC-Seq, we use whole-genome bisulfite sequencing on adipose tissue (AT) samples and public databases to design AT-specific panels. We establish its efficiency for high-density interrogation of methylome variability by systematic comparisons with other approaches and demonstrate its applicability by identifying novel methylation variation within enhancers strongly correlated to plasma triglyceride and HDL-cholesterol, including at CD36. Our more comprehensive AT panel assesses tissue methylation and genotypes in parallel at ∼4 and ∼3 M sites, respectively. Our study demonstrates that MCC-Seq provides comparable accuracy to alternative approaches but enables more efficient cataloguing of functional and disease-relevant epigenetic and genetic variants for large-scale EWAS.
  •  
15.
  • Hedman, Åsa K., et al. (författare)
  • DNA methylation patterns associated with oxidative stress in an ageing population
  • 2016
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Oxidative stress has been related to type 2 diabetes (T2D) and cardiovascular disease (CVD), the leading global cause of death. Contributions of environmental factors such as oxidative stress on complex traits and disease may be partly mediated through changes in epigenetic marks (e.g. DNA methylation). Studies relating differential methylation with intermediate phenotypes and disease endpoints may be useful in identifying additional candidate genes and mechanisms involved in disease. Methods: To investigate the role of epigenetic variation in oxidative stress marker levels and subsequent development of CVD and T2D, we performed analyses of genome-wide DNA methylation in blood, ten markers of oxidative stress (total glutathione [TGSH], reduced glutathione [GSH], oxidised glutathione [GSSG], GSSG to GSH ratio, homocysteine [HCY], oxidised low-density lipoprotein (oxLDL), antibodies against oxLDL [OLAB], conjugated dienes [CD], baseline conjugated dienes [BCD]-LDL and total antioxidant capacity [TAOC]) and incident disease in up to 966 age-matched individuals. Results: In total, we found 66 cytosine-guanine (CpG) sites associated with one or more oxidative stress markers (false discovery rate [FDR] <0.05). These sites were enriched in regulatory regions of the genome. Genes annotated to CpG sites showed enrichment in annotation clusters relating to phospho-metabolism and proteins with pleckstrin domains. We investigated the contribution of oxidative stress-associated CpGs to development of cardiometabolic disease. Methylation variation at CpGs in the 3'-UTR of HIST1H4D (cg08170869; histone cluster 1, H4d) and in the body of DVL1 (cg03465880; dishevelled-1) were associated with incident T2D events during 10 years of follow-up (all permutation p-values < 0.01), indicating a role of epigenetic regulation in oxidative stress processes leading to development or progression of diabetes. Methylation QTL (meQTL) analysis showed significant associations with genetic sequence variants in cis at 28 (42%) of oxidative stress phenotype-associated sites (FDR < 0.05). Integrating cis-meQTLs with genotype-phenotype associations indicated that genetic effects on oxidative stress phenotype at one locus (cg07547695; BCL2L11) may be mediated through DNA methylation. Conclusions: In conclusion, we report novel associations of DNA methylation with oxidative stress, some of which also show evidence of a relation with T2D incidence.
  •  
16.
  • Rahmioglu, Nilufer, et al. (författare)
  • Genome-wide enrichment analysis between endometriosis and obesity-related traits reveals novel susceptibility loci
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:4, s. 1185-1199
  • Tidskriftsartikel (refereegranskat)abstract
    • Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 × 10(-3)), which was stronger when we restricted the investigation to more severe (Stage B) cases (P = 4.5 × 10(-4)). However, no genetic enrichment was observed between endometriosis and BMI (P = 0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically significant (P = 6.41 × 10(-4)) overrepresentation of shared associations in developmental processes/WNT signalling between the two traits. Our results demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution and endometriosis pathogenesis research fields can inform each other.
  •  
17.
  • Wang, Yunzhang, et al. (författare)
  • Epigenetic influences on aging : a longitudinal genome-wide methylation study in old Swedish twins
  • 2018
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 13:9, s. 975-987
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related changes in DNA methylation were observed in cross-sectional studies, but longitudinal evidence is still limited. Here, we aimed to characterize longitudinal age-related methylation patterns using 1011 blood samples collected from 385 Swedish twins (age at entry: mean 69 and standard deviation 9.7, 73 monozygotic and 96 dizygotic pairs) up to five times (mean 2.6) over 20 years (mean 8.7). We identified 1316 age-associated methylation sites (P<1.3x10(-7)) using a longitudinal epigenome-wide association study design. We measured how estimated cellular compositions changed with age and how much they confounded the age effect. We validated the results in two independent longitudinal cohorts, where 118 CpGs were replicated in Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, 390 samples) (P<3.9x10(-5)), 594 in Lothian Birth Cohort (LBC, 3018 samples) (P<5.1x10(-5)) and 63 in both. Functional annotation of age-associated CpGs showed enrichment in CCCTC-binding factor (CTCF) and other transcription factor binding sites. We further investigated genetic influences on methylation and found no interaction between age and genetic effects in the 1316 age-associated CpGs. Moreover, in the same CpGs, methylation differences within twin pairs increased with 6.4% over 10 years, where monozygotic twins had smaller intra-pair differences than dizygotic twins. In conclusion, we show that age-related methylation changes persist in a longitudinal perspective, and are fairly stable across cohorts. The changes are under genetic influence, although this effect is independent of age. Moreover, methylation variability increase over time, especially in age-associated CpGs, indicating the increase of environmental contributions on DNA methylation with age.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-17 av 17
Typ av publikation
tidskriftsartikel (17)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Hedman, Åsa K (17)
Lind, Lars (11)
Deloukas, Panos (8)
Gustafsson, Stefan (8)
Ingelsson, Erik (6)
McCarthy, Mark I (5)
visa fler...
Sundström, Johan (5)
Gieger, Christian (5)
Peters, Annette (5)
Spector, Tim D. (5)
Mahajan, Anubha (5)
Vohl, Marie-Claude (5)
Ferrucci, Luigi (5)
Liang, Liming (5)
Grallert, Harald (5)
Borecki, Ingrid B. (5)
Perola, Markus (4)
Raitakari, Olli T (4)
Ohlsson, Claes, 1965 (4)
Shungin, Dmitry (4)
Wareham, Nicholas J. (4)
Hallmans, Göran (4)
Demirkan, Ayse (4)
van Duijn, Cornelia ... (4)
Langenberg, Claudia (4)
Pedersen, Nancy L (4)
Scott, Robert A (4)
Hunter, David J (4)
Lehtimäki, Terho (4)
Mangino, Massimo (4)
Walker, Mark (4)
Luan, Jian'an (4)
Sandling, Johanna K. (4)
Männistö, Satu (4)
Eriksson, Johan G. (4)
Rivadeneira, Fernand ... (4)
Jousilahti, Pekka (4)
Harris, Tamara B (4)
Liu, Yongmei (4)
Loos, Ruth J F (4)
Hofman, Albert (4)
Uitterlinden, André ... (4)
Illig, Thomas (4)
Prokopenko, Inga (4)
Visscher, Peter M. (4)
Tanaka, Toshiko (4)
Menni, Cristina (4)
Feitosa, Mary F. (4)
Day, Felix R. (4)
Schadt, Eric E. (4)
visa färre...
Lärosäte
Uppsala universitet (16)
Karolinska Institutet (8)
Umeå universitet (6)
Göteborgs universitet (4)
Lunds universitet (4)
Högskolan Dalarna (2)
visa fler...
Jönköping University (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy