SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kemp J. P.) srt2:(2010-2014)"

Sökning: WFRF:(Kemp J. P.) > (2010-2014)

  • Resultat 11-20 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Koller, Daniel L., et al. (författare)
  • Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women
  • 2013
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 28:3, s. 547-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta-analyses of these results have identified numerous single-nucleotide polymorphisms (SNPs) of modest effect at genome-wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta-analysis restricted to premenopausal white women from four cohorts (n=4061 women, aged 20 to 45 years) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. After imputation, age- and weight-adjusted bone-mineral density (BMD) values were tested for association with each SNP. Association of an SNP in the WNT16 gene (rs3801387; p=1.7x109) and multiple SNPs in the ESR1/C6orf97 region (rs4870044; p=1.3x108) achieved genome-wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven replication cohorts that included premenopausal women of European, Hispanic-American, and African-American descent (combined n=5597 for femoral neck; n=4744 for lumbar spine). When the data from the discovery and replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p=1.3x1011; ESR1/C6orf97 joint p=1.4x1010). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p<1x105). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period. (c) 2013 American Society for Bone and Mineral Research.
  •  
12.
  • Kaminski, T., et al. (författare)
  • The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges
  • 2013
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953. ; 118:4, s. 1414-1426
  • Forskningsöversikt (refereegranskat)abstract
    • We present the concept of the Carbon Cycle Data Assimilation System and describe its evolution over the last two decades from an assimilation system around a simple diagnostic model of the terrestrial biosphere to a system for the calibration and initialization of the land component of a comprehensive Earth system model. We critically review the capability of this modeling framework to integrate multiple data streams, to assess their mutual consistency and with the model, to reduce uncertainties in the simulation of the terrestrial carbon cycle, to provide, in a traceable manner, reanalysis products with documented uncertainty, and to assist the design of the observational network. We highlight some of the challenges we met and experience we gained, give recommendations for operating the system, and suggest directions for future development.
  •  
13.
  • Petherick, L., et al. (författare)
  • Climatic records over the past 30 ka from temperate Australia - a synthesis from the Oz-INTIMATE workgroup
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 74, s. 58-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperate Australia sits between the heat engine of the tropics and the cold Southern Ocean, encompassing a range of rainfall regimes and falling under the influence of different climatic drivers. Despite this heterogeneity, broad-scale trends in climatic and environmental change are evident over the past 30 ka. During the early glacial period (similar to 30-22 ka) and the Last Glacial Maximum (similar to 22-18 ka), climate was relatively cool across the entire temperate zone and there was an expansion of grasslands and increased fluvial activity in regionally important Murray Darling Basin. The temperate region at this time appears to be dominated by expanded sea ice in the Southern Ocean forcing a northerly shift in the position of the oceanic fronts and a concomitant influx of cold water along the southeast (including Tasmania) and southwest Australian coasts. The deglacial period (similar to 18-12 ka) was characterised by glacial recession and eventual disappearance resulting from an increase in temperature deduced from terrestrial records, while there is some evidence for climatic reversals (e.g. the Antarctic Cold Reversal) in high resolution marine sediment cores through this period. The high spatial density of Holocene terrestrial records reveals an overall expansion of sclerophyll woodland and rainforest taxa across the temperate region after similar to 12 ka, presumably in response to increasing temperature, while hydrological records reveal spatially heterogeneous hydro-climatic trends. Patterns after similar to 6 ka suggest higher frequency climatic variability that possibly reflects the onset of large scale climate variability caused by the El Nino/Southern Oscillation.
  •  
14.
  • Zhang, J., et al. (författare)
  • Natural and human-induced hypoxia and consequences for coastal areas : synthesis and future development
  • 2010
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 7:5, s. 1443-1467
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes a deterioration of the structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, coastal waters, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include freshwater runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses. Their different interactions set up mechanisms that drive the system towards hypoxia. Coastal systems also vary in their relative susceptibility to hypoxia depending on their physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences include compression and loss of habitat, as well as changes in organism life cycles and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in non-linear ways with pronounced feedbacks to other compartments of the Earth System, including those that affect human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behavior that will improve confidence in remediation management strategies for coastal hypoxia.
  •  
15.
  •  
16.
  • Kemp, John P, et al. (författare)
  • Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.
  • 2014
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.
  •  
17.
  • Medina-Gomez, Carolina, et al. (författare)
  • Meta-Analysis of Genome-Wide Scans for Total Body BMD in Children and Adults Reveals Allelic Heterogeneity and Age-Specific Effects at the WNT16 Locus.
  • 2012
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P=4.1×10(-11) observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ±500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P=2.6×10(-31) and an effect size explaining between 0.6%-1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P=1.42×10(-10)) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P=1.9×10(-16)) and rs7801723 (P=8.9×10(-28)), also mapping to C7orf58 (r(2)=0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.
  •  
18.
  •  
19.
  •  
20.
  • Zheng, Hou-Feng, et al. (författare)
  • WNT16 influences bone mineral density, Cortical bone thickness, bone strength, and Osteoporotic fracture risk
  • 2012
  • Ingår i: PLoS genetics. - SAN FRANCISCO, USA : PUBLIC LIBRARY SCIENCE. - 1553-7404. ; 8:7, s. e1002745-
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2×10(-9)). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3×10(-12), and -0.16 SD per G allele, P = 1.2×10(-15), respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10(-9)), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10(-6) and rs2707466: OR = 1.22, P = 7.2×10(-6)). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/-) mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5×10(-13)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 26
Typ av publikation
tidskriftsartikel (23)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (25)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Evans, David M (10)
Ring, Susan M (8)
Timpson, Nicholas J. (8)
St Pourcain, Beate (8)
Ohlsson, Claes, 1965 (7)
Smith, George Davey (7)
visa fler...
Vandenput, Liesbeth, ... (6)
Lorentzon, Mattias, ... (6)
Rivadeneira, Fernand ... (6)
Hofman, Albert (5)
Uitterlinden, André ... (5)
Smith, GD (4)
Evans, DM (4)
Eriksson, Joel (4)
Lehtimäki, Terho (4)
Kemp, JP (4)
Mitchell, Braxton D. (4)
Richards, J Brent (4)
Jaddoe, Vincent W V (4)
Raitakari, Olli (4)
Medina-Gomez, Caroli ... (4)
Karlsson, Magnus (3)
Viikari, Jorma (3)
Cooper, Cyrus (3)
Hofman, A (3)
Montgomery, GW (3)
Uitterlinden, AG (3)
Martin, NG (3)
Timpson, NJ (3)
van Duijn, Cornelia ... (3)
Kähönen, Mika (3)
Mellström, Dan, 1945 (3)
Willemsen, Gonneke (3)
Boomsma, Dorret I. (3)
Jarvelin, Marjo-Riit ... (3)
Jarvelin, MR (3)
Wilson, James F. (3)
Zillikens, M. Carola (3)
Spector, TD (3)
Warrington, Nicole M (3)
Lawlor, Debbie A (3)
Hottenga, Jouke-Jan (3)
Paternoster, Lavinia (3)
Prokopenko, Inga (3)
Dedoussis, George V. (3)
Estrada, Karol (3)
Sayers, Adrian (3)
Kemp, P (3)
Koller, Daniel L (3)
Econs, Michael J (3)
visa färre...
Lärosäte
Göteborgs universitet (9)
Lunds universitet (8)
Karolinska Institutet (8)
Uppsala universitet (6)
Stockholms universitet (4)
Umeå universitet (3)
visa fler...
Högskolan Dalarna (2)
Linköpings universitet (1)
Mittuniversitetet (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (13)
Naturvetenskap (7)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy