SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kovacs L) srt2:(2020-2024)"

Sökning: WFRF:(Kovacs L) > (2020-2024)

  • Resultat 11-20 av 107
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Benz, W., et al. (författare)
  • The CHEOPS mission
  • 2021
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:1, s. 109-151
  • Tidskriftsartikel (refereegranskat)abstract
    • The CHaracterising ExOPlanet Satellite (CHEOPS) was selected on October 19, 2012, as the first small mission (S-mission) in the ESA Science Programme and successfully launched on December 18, 2019, as a secondary passenger on a Soyuz-Fregat rocket from Kourou, French Guiana. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. The expected photometric precision will also allow CHEOPS to go beyond measuring only transits and to follow phase curves or to search for exo-moons, for example. Finally, by unveiling transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. To reach its science objectives, requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars (stellar radius of 0.9R⊙) in the magnitude range 6 ≤ V ≤ 9 by achieving a photometric precision of 20 ppm in 6 hours of integration time. In the case of K-type stars (stellar radius of 0.7R⊙) of magnitude in the range 9 ≤ V ≤ 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration time. This precision has to be maintained over continuous periods of observation for up to 48 hours. This precision and stability will be achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter, on-axis Ritchey-Chrétien telescope. The nearly 275 kg spacecraft is nadir-locked, with a pointing accuracy of about 1 arcsec rms, and will allow for at least 1 Gbit/day downlink. The sun-synchronous dusk-dawn orbit at 700 km altitude enables having the Sun permanently on the backside of the spacecraft thus minimising Earth stray light. A mission duration of 3.5 years in orbit is foreseen to enable the execution of the science programme. During this period, 20% of the observing time is available to the wider community through yearly ESA call for proposals, as well as through discretionary time approved by ESA’s Director of Science. At the time of this writing, CHEOPS commissioning has been completed and CHEOPS has been shown to fulfill all its requirements. The mission has now started the execution of its science programme.
  •  
12.
  •  
13.
  • Contarini, S., et al. (författare)
  • Euclid : cosmological forecasts from the void size function
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • The Euclid mission - with its spectroscopic galaxy survey covering a sky area over 15 000 deg(2) in the redshift range 0.9 < z < 1.8 - will provide a sample of tens of thousands of cosmic voids. This paper thoroughly explores for the first time the constraining power of the void size function on the properties of dark energy (DE) from a survey mock catalogue, the official Euclid Flagship simulation. We identified voids in the Flagship light-cone, which closely matches the features of the upcoming Euclid spectroscopic data set. We modelled the void size function considering a state-of-the art methodology: we relied on the volume-conserving (Vdn) model, a modification of the popular Sheth & van de Weygaert model for void number counts, extended by means of a linear function of the large-scale galaxy bias. We found an excellent agreement between model predictions and measured mock void number counts. We computed updated forecasts for the Euclid mission on DE from the void size function and provided reliable void number estimates to serve as a basis for further forecasts of cosmological applications using voids. We analysed two different cosmological models for DE: the first described by a constant DE equation of state parameter, w, and the second by a dynamic equation of state with coefficients w(0) and w(a). We forecast 1 sigma errors on w lower than 10% and we estimated an expected figure of merit (FoM) for the dynamical DE scenario FoM(w0,wa) = 17 when considering only the neutrino mass as additional free parameter of the model. The analysis is based on conservative assumptions to ensure full robustness, and is a pathfinder for future enhancements of the technique. Our results showcase the impressive constraining power of the void size function from the Euclid spectroscopic sample, both as a stand-alone probe, and to be combined with other Euclid cosmological probes.
  •  
14.
  • Hamaus, N., et al. (författare)
  • Euclid : Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Euclid is poised to survey galaxies across a cosmological volume of unprecedented size, providing observations of more than a billion objects distributed over a third of the full sky. Approximately 20 million of these galaxies will have their spectroscopy available, allowing us to map the three-dimensional large-scale structure of the Universe in great detail. This paper investigates prospects for the detection of cosmic voids therein and the unique benefit they provide for cosmological studies. In particular, we study the imprints of dynamic (redshift-space) and geometric (Alcock-Paczynski) distortions of average void shapes and their constraining power on the growth of structure and cosmological distance ratios. To this end, we made use of the Flagship mock catalog, a state-of-the-art simulation of the data expected to be observed with Euclid. We arranged the data into four adjacent redshift bins, each of which contains about 11000 voids and we estimated the stacked void-galaxy cross-correlation function in every bin. Fitting a linear-theory model to the data, we obtained constraints on f/b and DMH, where f is the linear growth rate of density fluctuations, b the galaxy bias, D-M the comoving angular diameter distance, and H the Hubble rate. In addition, we marginalized over two nuisance parameters included in our model to account for unknown systematic effects in the analysis. With this approach, Euclid will be able to reach a relative precision of about 4% on measurements of f/b and 0.5% on DMH in each redshift bin. Better modeling or calibration of the nuisance parameters may further increase this precision to 1% and 0.4%, respectively. Our results show that the exploitation of cosmic voids in Euclid will provide competitive constraints on cosmology even as a stand-alone probe. For example, the equation-of-state parameter, w, for dark energy will be measured with a precision of about 10%, consistent with previous more approximate forecasts.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Burrascano, S., et al. (författare)
  • Where are we now with European forest multi-taxon biodiversity and where can we head to?
  • 2023
  • Ingår i: Biological Conservation. - 0006-3207. ; 284
  • Tidskriftsartikel (refereegranskat)abstract
    • The European biodiversity and forest strategies rely on forest sustainable management (SFM) to conserve forest biodiversity. However, current sustainability assessments hardly account for direct biodiversity indicators. We focused on forest multi-taxon biodiversity to: i) gather and map the existing information; ii) identify knowledge and research gaps; iii) discuss its research potential. We established a research network to fit data on species, standing trees, lying deadwood and sampling unit description from 34 local datasets across 3591 sampling units. A total of 8724 species were represented, with the share of common and rare species varying across taxonomic classes: some included many species with several rare ones (e.g., Insecta); others (e.g., Bryopsida) were repre-sented by few common species. Tree-related structural attributes were sampled in a subset of sampling units (2889; 2356; 2309 and 1388 respectively for diameter, height, deadwood and microhabitats). Overall, multi-taxon studies are biased towards mature forests and may underrepresent the species related to other develop-mental phases. European forest compositional categories were all represented, but beech forests were over-represented as compared to thermophilous and boreal forests. Most sampling units (94%) were referred to a habitat type of conservation concern. Existing information may support European conservation and SFM stra-tegies in: (i) methodological harmonization and coordinated monitoring; (ii) definition and testing of SFM in-dicators and thresholds; (iii) data-driven assessment of the effects of environmental and management drivers on multi-taxon forest biological and functional diversity, (iv) multi-scale forest monitoring integrating in-situ and remotely sensed information.
  •  
19.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 107
Typ av publikation
tidskriftsartikel (101)
konferensbidrag (2)
forskningsöversikt (2)
konstnärligt arbete (1)
rapport (1)
Typ av innehåll
refereegranskat (98)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Moons, Philip, 1968 (15)
Kovacs, Adrienne H. (14)
Jackson, Jamie L. (14)
Luyckx, Koen (13)
Johansson, Bengt (12)
Kovacs, A (12)
visa fler...
Alday, Luis (12)
Callus, Edward (12)
Caruana, Maryanne (12)
Cook, Stephen C. (12)
Enomoto, Junko (12)
Fernandes, Susan M. (12)
Khairy, Paul (12)
Kutty, Shelby (12)
Menahem, Samuel (12)
Dellborg, Mikael, 19 ... (11)
Lind, Lars (11)
Berghammer, Malin, 1 ... (11)
Chidambarathanu, Sha ... (11)
Gudnason, V (10)
Lind, L (10)
Apers, Silke (10)
Budts, Werner (10)
Eriksen, Katrine (10)
Liu, J. (9)
Peters, A (9)
Lehtimaki, T. (9)
Salomaa, V (9)
Zheng, W. (8)
Lin, X. (8)
Linneberg, A. (8)
Boehnke, M (8)
Wong, A (8)
Mahajan, A. (7)
Jonas, JB (7)
Loos, RJF (7)
Cheng, CY (7)
Volzke, H (7)
Wong, TY (7)
Ikram, MA (7)
Ohlsson, Claes, 1965 (7)
Marz, W. (7)
Snieder, H. (7)
Tuomilehto, J. (7)
Christensen, K (7)
Laakso, M. (7)
van Dam, RM (7)
Gieger, C (7)
Jarvelin, MR (7)
Borbas, K. Eszter (7)
visa färre...
Lärosäte
Karolinska Institutet (46)
Göteborgs universitet (37)
Uppsala universitet (25)
Umeå universitet (21)
Lunds universitet (21)
Högskolan Väst (11)
visa fler...
Stockholms universitet (6)
Luleå tekniska universitet (4)
Högskolan i Skövde (3)
Kungliga Tekniska Högskolan (2)
Örebro universitet (1)
Linköpings universitet (1)
Handelshögskolan i Stockholm (1)
Chalmers tekniska högskola (1)
Högskolan i Borås (1)
RISE (1)
Högskolan Dalarna (1)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (107)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (44)
Naturvetenskap (29)
Samhällsvetenskap (12)
Teknik (4)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy