SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McCarthy Mark I) srt2:(2020-2023)"

Sökning: WFRF:(McCarthy Mark I) > (2020-2023)

  • Resultat 11-20 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Vogelezang, Suzanne, et al. (författare)
  • Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.
  • 2020
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
  •  
12.
  • Atabaki-Pasdar, Naeimeh, et al. (författare)
  • Inferring causal pathways between metabolic processes and liver fat accumulation: an IMI DIRECT study
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) often co-occur. Defining causal pathways underlying this relationship may help optimize the prevention and treatment of both diseases. Thus, we assessed the strength and magnitude of the putative causal pathways linking dysglycemia and fatty liver, using a combination of causal inference methods.Measures of glycemia, insulin dynamics, magnetic resonance imaging (MRI)-derived abdominal and liver fat content, serological biomarkers, lifestyle, and anthropometry were obtained in participants from the IMI DIRECT cohorts (n=795 with new onset T2D and 2234 individuals free from diabetes). UK Biobank (n=3641) was used for modelling and replication purposes. Bayesian networks were employed to infer causal pathways, with causal validation using two-sample Mendelian randomization.Bayesian networks fitted to IMI DIRECT data identified higher basal insulin secretion rate (BasalISR) and MRI-derived excess visceral fat (VAT) accumulation as the features of dysmetabolism most likely to cause liver fat accumulation; the unconditional probability of fatty liver (>5%) increased significantly when conditioning on high levels of BasalISR and VAT (by 23%, 32% respectively; 40% for both). Analyses in UK Biobank yielded comparable results. MR confirmed most causal pathways predicted by the Bayesian networks.Here, BasalISR had the highest causal effect on fatty liver predisposition, providing mechanistic evidence underpinning the established association of NAFLD and T2D. BasalISR may represent a pragmatic biomarker for NAFLD prediction in clinical practice.Competing Interest StatementHR is an employee and shareholder of Sanofi. MIM: The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. MIM has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, MIM is an employee of Genentech, and a holder of Roche stock. AM is a consultant for Lilly and has received research grants from several diabetes drug companies. PWF has received research grants from numerous diabetes drug companies and fess as consultant from Novo Nordisk, Lilly, and Zoe Global Ltd. He is currently the Scientific Director in Patient Care at the Novo Nordisk Foundation. Other authors declare non competing interests.Funding StatementThe work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement 115317 (DIRECT) resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. NAP is supported in part by Henning och Johan Throne-Holsts Foundation, Hans Werthen Foundation, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. HPM is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AGJ is supported by an NIHR Clinician Scientist award (17/0005624). RK is funded by the Novo Nordisk Foundation (NNF18OC0031650) as part of a postdoctoral fellowship, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AK, PM, HF, JF and GNG are supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. TJM is funded by an NIHR clinical senior lecturer fellowship. S.Bru acknowledges support from the Novo Nordisk Foundation (grants NNF17OC0027594 and NNF14CC0001). ATH is a Wellcome Trust Senior Investigator and is also supported by the NIHR Exeter Clinical Research Facility. JMS acknowledges support from Science for Life Laboratory (Plasma Profiling Facility), Knut and Alice Wallenberg Foundation (Human Protein Atlas) and Erling-Persson Foundation (KTH Centre for Precision Medicine). MIM is supported by the following grants; Wellcome (090532, 098381, 106130, 203141, 212259); NIH (U01-DK105535). PWF is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Approval for the study protocol was obtained from each of the regional research ethics review boards separately (Lund, Sweden: 20130312105459927, Copenhagen, Denmark: H-1-2012-166 and H-1-2012-100, Amsterdam, Netherlands: NL40099.029.12, Newcastle, Dundee and Exeter, UK: 12/NE/0132), and all participants provided written informed consent at enrolment. The research conformed to the ethical principles for medical research involving human participants outlined in the Declaration of Helsinki.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAuthors agree to make data and materials supporting the results or analyses presented in their paper available upon reasonable request
  •  
13.
  • Bizzotto, Roberto, et al. (författare)
  • Processes Underlying Glycemic Deterioration in Type 2 Diabetes : An IMI DIRECT Study
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:2, s. 511-518
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: A total of 732 recently diagnosed patients with T2D from the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) study were extensively phenotyped over 3 years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS), and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. RESULTS: Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS and increasing CLIm; visceral or liver fat, HDL-cholesterol, and triglycerides had further independent, though weaker, roles (R2 = 0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from area under the receiver operating characteristic = 0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS, and CLIm was relatively stable (odds ratios 0.07-0.09). T2D polygenic risk score and baseline pancreatic fat, glucagon-like peptide 1, glucagon, diet, and physical activity did not show an independent role. CONCLUSIONS: Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of patients with T2D in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression.
  •  
14.
  • Jones, Benedict C, et al. (författare)
  • To which world regions does the valence-dominance model of social perception apply?
  • 2021
  • Ingår i: Nature Human Behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 5:1, s. 159-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 10 years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 5 November 2018. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.7611443.v1 .
  •  
15.
  • Lagou, Vasiliki, et al. (författare)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
16.
  • Obura, Morgan, et al. (författare)
  • Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes : An IMI-DIRECT study
  • 2020
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:11
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk.
  •  
17.
  • Pervjakova, Natalia, et al. (författare)
  • Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes
  • 2022
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 31:19, s. 3377-3391
  • Tidskriftsartikel (refereegranskat)abstract
    • Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy (GenDIP) Consortium assembled genome-wide association studies (GWAS) of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (p < 5x10-8) with GDM, mapping to/near MTNR1B (p = 4.3x10-54), TCF7L2 (p = 4.0x10-16), CDKAL1 (p = 1.6 × 10-14), CDKN2A-CDKN2B (p = 4.1x10-9) and HKDC1 (p = 2.9x10-8). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D; and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomisation analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.
  •  
18.
  • Tura, Andrea, et al. (författare)
  • Profiles of Glucose Metabolism in Different Prediabetes Phenotypes, Classified by Fasting Glycemia, 2-Hour OGTT, Glycated Hemoglobin, and 1-Hour OGTT : An IMI DIRECT Study
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:9, s. 2092-2106
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glucose tolerance test (OGTT) at baseline and 48 months. HbA1c was also measured. We classified participants as having isolated prediabetes defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or HbA1c indicative of prediabetes [IA1c]), two defects (IFG+IGT, IFG+IA1c, or IGT+IA1c), or all defects (IFG+IGT+IA1c). β-Cell function (BCF) and insulin sensitivity were assessed from OGTT. At baseline, in pooling of participants with isolated defects, they showed impairment in both BCF and insulin sensitivity compared with healthy control subjects. Pooled groups with two or three defects showed progressive further deterioration. Among groups with isolated defect, those with IGT showed lower insulin sensitivity, insulin secretion at reference glucose (ISRr), and insulin secretion potentiation (P < 0.002). Conversely, those with IA1c showed higher insulin sensitivity and ISRr (P < 0.0001). Among groups with two defects, we similarly found differences in both BCF and insulin sensitivity. At 48 months, we found higher type 2 diabetes incidence for progressively increasing number of prediabetes defects (odds ratio >2, P < 0.008). In conclusion, the prediabetes groups showed differences in type/degree of glucometabolic impairment. Compared with the pooled group with isolated defects, those with double or triple defect showed progressive differences in diabetes incidence.
  •  
19.
  • Viñuela, Ana, et al. (författare)
  • Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4912-4912
  • Tidskriftsartikel (refereegranskat)abstract
    • Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.
  •  
20.
  • Cai, Lina, et al. (författare)
  • Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study
  • 2020
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is a global public health challenge. Whilst the advent of genome-wide association studies has identified >400 genetic variants associated with T2D, our understanding of its biological mechanisms and translational insights is still limited. The EPIC-InterAct project, centred in 8 countries in the European Prospective Investigations into Cancer and Nutrition study, is one of the largest prospective studies of T2D. Established as a nested case-cohort study to investigate the interplay between genetic and lifestyle behavioural factors on the risk of T2D, a total of 12,403 individuals were identified as incident T2D cases, and a representative sub-cohort of 16,154 individuals was selected from a larger cohort of 340,234 participants with a follow-up time of 3.99 million person-years. We describe the results from a genome-wide association analysis between more than 8.9 million SNPs and T2D risk among 22,326 individuals (9,978 cases and 12,348 non-cases) from the EPIC-InterAct study. The summary statistics to be shared provide a valuable resource to facilitate further investigations into the genetics of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 27
Typ av publikation
tidskriftsartikel (25)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
McCarthy, Mark I (23)
Mahajan, Anubha (17)
Franks, Paul W. (14)
Pedersen, Oluf (12)
Hansen, Torben (11)
Laakso, Markku (10)
visa fler...
Groop, Leif (9)
Vinuela, Ana (9)
Hattersley, Andrew T (9)
Walker, Mark (9)
Mari, Andrea (8)
De Masi, Federico (8)
Pavo, Imre (8)
Ruetten, Hartmut (8)
Schwenk, Jochen M. (7)
Kokkola, Tarja (7)
Ridderstråle, Martin (6)
Koivula, Robert W (6)
Thorleifsson, Gudmar (6)
Stefansson, Kari (6)
Vestergaard, Henrik (6)
Adamski, Jerzy (6)
Brunak, Søren (6)
Rutters, Femke (6)
Palmer, Colin N. A. (6)
Salomaa, Veikko (5)
Giordano, Giuseppe N ... (5)
Deloukas, Panos (5)
Wareham, Nicholas J. (5)
Grarup, Niels (5)
Langenberg, Claudia (5)
Boehnke, Michael (5)
Thorsteinsdottir, Un ... (5)
Heggie, Alison (5)
Dermitzakis, Emmanou ... (5)
Froguel, Philippe (5)
Tura, Andrea (5)
Luan, Jian'an (5)
Tuomi, Tiinamaija (4)
Perola, Markus (4)
Lind, Lars (4)
Sattar, Naveed (4)
Linneberg, Allan (4)
Mohlke, Karen L (4)
Saleheen, Danish (4)
Gieger, Christian (4)
Jarvelin, Marjo-Riit ... (4)
McEvoy, Donna (4)
Forgie, Ian (4)
Elders, Petra (4)
visa färre...
Lärosäte
Lunds universitet (21)
Kungliga Tekniska Högskolan (7)
Uppsala universitet (6)
Göteborgs universitet (5)
Umeå universitet (5)
Karolinska Institutet (4)
visa fler...
Stockholms universitet (2)
Högskolan Väst (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (4)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy