SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wahlström Claes Göran) srt2:(2010-2014)"

Sökning: WFRF:(Wahlström Claes Göran) > (2010-2014)

  • Resultat 11-20 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Desforges, F. G., et al. (författare)
  • Reproducibility of electron beams from laser wakefield acceleration in capillary tubes
  • 2014
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 740, s. 54-59
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability of accelerated electron beams produced by self injection of plasma electrons into the wakefield driven by a laser pulse guided inside capillary tubes is analyzed statistically in relation to laser and plasma parameters, and compared to results obtained in a gas jet. The analysis shows that reproducible electron beams are achieved with a charge of 66 pC +/- 11%, a FWHM beam divergence of 9 mrad +/- 14%, a maximum energy of 120 MeV +/- 10% and pointing fluctuations of 2.3 mrad using 10 mm long, 178 mu m diameter capillary tubes at an electron density of (10.0 +/- 1.5) x 10(18) cm(-3). Active stabilization of the laser pointing was used and laser parameters were recorded on each shot. Although the shot-to-shot laser energy fluctuations can account for a fraction of the electrons fluctuations, gas density fluctuations are suspected to be a more important source of instability. (C) 2013 Elsevier B.V. All rights reserved.
  •  
12.
  • Fullagar, Wilfred, et al. (författare)
  • Lab-based Ultrafast Molecular Structure.
  • 2010
  • Ingår i: AIP Conference Proceedings. - : AIP. - 1551-7616 .- 0094-243X. ; 1234, s. 919-922
  • Konferensbidrag (refereegranskat)abstract
    • The proliferation of various laser-driven approaches to sub-picosecond hard X-ray and short-wavelength radiation generation in the past few decades has opened many avenues for the laboratory-based development of traditionally facility-based short wavelength ultrafast molecular structure science. Together with the introduction of microcalorimeter detection schemes, this opens the floodgates to widespread, decentralized implementation of what were until recently specialist short wavelength techniques. A parallel situation exists for the contemporary adoption of sub-wavelength resolution optical microscopies. In what follows, a few ultrafast molecular structure developments and their rationale are briefly recounted.
  •  
13.
  • Genoud, Guillaume, et al. (författare)
  • Active control of the pointing of a multi-terawatt laser.
  • 2011
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 82:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The beam pointing of a multi-terawatt laser wave laser is stabilized on a millisecond time scale using an active control system. Two piezo mirrors, two position sensing detectors, and a computer based optimization program ensure that both near- and far-field are stable, even during single shot operation. A standard deviation for the distribution of laser shots of 2.6 μ rad is achieved.
  •  
14.
  • Genoud, Guillaume, et al. (författare)
  • Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:6
  • Tidskriftsartikel (refereegranskat)abstract
    • By controlling the focal spot quality with a deformable mirror, we are able to show that increasing the fraction of pulse energy contained within the central part of the focal spot, while keeping the total energy and central spot size constant, significantly increases the amount of energy transferred to the wakefield: Our measurements show that the laser loses significantly more laser energy and undergoes greater redshifting and that more charge is produced in the accelerated beam. Three dimensional particle in cell simulations performed with accurate representations of the measured focal spot intensity distribution confirm that energy in the wings of the focal spot is effectively wasted. Even though self-focusing occurs, energy in the wings of the focal spot distribution is not coupled into the wakefield, emphasising the vital importance of high quality focal spot profiles in experiments. (C) 2013 AIP Publishing LLC.
  •  
15.
  • Genoud, Guillaume, et al. (författare)
  • Laser-plasma electron acceleration in dielectric capillary tubes
  • 2011
  • Ingår i: Applied Physics B. - : Springer Science and Business Media LLC. - 0946-2171 .- 1432-0649. ; 105:2, s. 309-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron beams and betatron X-ray radiation generated by laser wakefield acceleration in long plasma targets are studied. The targets consist of hydrogen filled dielectric capillary tubes of diameter 150 to 200 microns and length 6 to 20 mm. Electron beams are observed for peak laser intensities as low as 5x10(17) W/cm(2). It is found that the capillary collects energy outside the main peak of the focal spot and contributes to keep the beam self-focused over a distance longer than in a gas jet of similar density. This enables the pulse to evolve enough to reach the threshold for wavebreaking, and thus trap and accelerate electrons. No electrons were observed for capillaries of large diameter (250 mu m), confirming that the capillary influences the interaction and does not have the same behaviour as a gas cell. Finally, X-rays are used as a diagnostic of the interaction and, in particular, to estimate the position of the electrons trapping point inside the capillary.
  •  
16.
  • Gopal, A., et al. (författare)
  • MegaGauss magnetic field generation by ultra-short pulses at relativistic intensities
  • 2013
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 55:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the experimental studies on megaGauss magnetic field generation using a 35 femtosecond laser at relativistic intensities. The polarization change of the self-generated harmonics was recorded to estimate the magnetic field. A parameter scan was performed by varying the input laser intensity as well as the contrast ratio. External optical probing diagnostics were performed using the second harmonic of the incident laser. Additionally, the optical transition radiation from the rear of the target was also recorded.
  •  
17.
  • Gray, R. J., et al. (författare)
  • Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients
  • 2014
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser energy absorption to fast electrons during the interaction of an ultra-intense (10(20) Wcm(-2)), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient.
  •  
18.
  • Green, J. S., et al. (författare)
  • Enhanced proton flux in the MeV range by defocused laser irradiation
  • 2010
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin Al foils (50 nm and 6 mu m) were irradiated at intensities of up to 2x10(19) W cm(-2) using high contrast (10(8)) laser pulses. Ion emission from the rear of the targets was measured using a scintillator-based Thomson parabola and beam sampling 'footprint' monitor. The variation of the ion spectra and beam profile with focal spot size was systematically studied. The results show that while the maximum proton energy is achieved around tight focus for both target thicknesses, as the spot size increases the ion flux at lower energies is seen to peak at significantly increased spot sizes. Measurements of the proton footprint, however, show that the off-axis proton flux is highest at tight focus, indicating that a previously identified proton deflection mechanism may alter the on-axis spectrum. One-dimensional particle-in-cell modelling of the experiment supports our hypothesis that the observed change in spectra with focal spot size is due to the competition of two effects: decrease in laser intensity and an increase in proton emission area.
  •  
19.
  • Hansson, Martin, et al. (författare)
  • Enhanced stability of laser wakefield acceleration using dielectric capillary tubes
  • 2014
  • Ingår i: Physical Review Special Topics. Accelerators and Beams. - 1098-4402. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability of beams of laser wakefield accelerated electrons in dielectric capillary tubes is experimentally investigated. These beams are found to be more stable in charge and pointing than the corresponding beams of electrons accelerated in a gas jet. Electron beams with an average charge of 43 pC and a standard deviation of 14% are generated. The fluctuations in charge are partly correlated to fluctuations in laser pulse energy. The pointing scatter of the electron beams is measured to be as low as 0.8 mrad (rms). High laser beam pointing stability improved the stability of the electron beams.
  •  
20.
  • Ju, J., et al. (författare)
  • Analysis of x-ray emission and electron dynamics in a capillary-guided laser wakefield accelerator
  • 2014
  • Ingår i: Physical Review Special Topics. Accelerators and Beams. - 1098-4402. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of electron acceleration driven by laser wakefield inside a 30.5 mm long dielectric capillary tube is analyzed using radiation emitted in the x-ray range. 3D particle-in-cell simulations, performed with parameters close to the experimental ones, show that in long plasmas, the accelerated electrons catch up and finally overrun the driving laser owing to a higher velocity of the electrons in the plasma. The electrons are then transversely scattered by the laser pulse, and penetrate the capillary wall where they generate bremsstrahlung radiation, modeled using geant4 simulations. The signature of bremsstrahlung radiation is detected using an x-ray camera, together with the betatron radiation emitted during electron acceleration in the plasma bubble. The reflection of betatron radiation from the inner capillary surface also accounts for a fraction of the observed signal on the x-ray camera. The simulation results are in agreement with the experimental ones and provide a detailed description of the electron and radiation properties, useful for the design of laser wakefield accelerators or radiation sources using long plasma media.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy