SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Shi Li Professor) srt2:(2020-2023)"

Sökning: WFRF:(Zhang Shi Li Professor) > (2020-2023)

  • Resultat 11-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  • Luo, Dan, et al. (författare)
  • Green, General and Low-cost Synthesis of Porous Organic Polymers in Sub-kilogram Scale for Catalysis and CO2 Capture
  • 2023
  • Ingår i: Angewandte Chemie International Edition. - : John Wiley & Sons. ; n/a:n/a
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous organic polymers (POPs) with high porosity and tunable functionalities have been widely studied for use in gas separation, catalysis, energy conversion and energy storage. However, the high cost of organic monomers, and the use of toxic solvents and high temperatures during synthesis pose obstacles for large-scale production. Herein, we report the synthesis of imine and aminal-linked POPs using inexpensive diamine and dialdehyde monomer in green solvents. Theoretical calculations and control experiments show that using meta-diamines is crucial for forming aminal linkages and branching porous networks from [2 + 2] polycondensation reactions. The method demonstrates good generality in that 6 POPs were successfully synthesized from different monomers. Additionally, we scaled up the synthesis in ethanol at room temperature, resulting in the production of POPs in sub-kilogram quantities at a relatively low cost. Proof-of-concept studies demonstrate that the POPs can be used as high-performance sorbents for CO2 separation and as porous substrates for efficient heterogeneous catalysis. This method provides an environmentally friendly and cost-effective approach for large-scale synthesis of various POPs.
  •  
13.
  • Taddei, C, et al. (författare)
  • Repositioning of the global epicentre of non-optimal cholesterol
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 582:7810, s. 73-
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.
  •  
14.
  • Wang, Yuanbo, et al. (författare)
  • Prediction of urban airflow fields around isolated high-rise buildings using data-driven non-linear correction models
  • 2023
  • Ingår i: Building and Environment. - : Elsevier BV. - 0360-1323 .- 1873-684X. ; 246
  • Tidskriftsartikel (refereegranskat)abstract
    • When it comes to predicting urban airflow, steady Reynolds-averaged Navier-Stokes (SRANS) models that rely on Reynolds stress often face a challenge called the closure problem. This problem involves unresolved structural flaws and uncertainties in the closure coefficients used in the models. Previous attempts to recalibrate coefficients for specific urban flows without breaking the linear constitutive relation have resulted in simulation results constrained by the baseline turbulence model. Therefore, this study aims to enhance the performance of SRANS models by addressing these structural flaws. To achieve this, a novel data-driven framework is proposed. It leverages the deterministic symbolic regression algorithm to discover explicit algebraic expressions for a non-linear Reynolds stress correction model. The robustness of the correction model is ensured by maintaining the linear eddy viscosity model for iterative calculations while keeping the non-linear component frozen. The proposed framework is evaluated using three isolated building cases with varying geometric configurations and inflow boundary conditions. Findings demonstrate that computational fluid dynamics (CFD) predictions incorporating the data-driven non-linear correction model consistently align closer to wind tunnel experimental results compared to both standard and non-linear versions of the k-ε turbulence model. This improvement is reflected in reduced reattachment lengths and more accurate mean velocity distributions in the wake of buildings. However, it should be noted that there is a possibility of overpredicting wind velocity in the windward area. This study introduces valuable insights and additional strategies to enhance the prediction accuracy of SRANS models in urban airflow simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy