SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 srt2:(2015-2019)"

Sökning: L773:1680 7316 > (2015-2019)

  • Resultat 31-40 av 186
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • D'Ambro, E. L., et al. (författare)
  • Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low- and high-NOx conditions
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:1, s. 159-174
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO2 and low-NO conditions, highly oxygenated (O : C >= 1) C-5 compounds were major components (similar to 50 %) of SOA. The SOA composition and effective volatility evolved both as a function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, >30% of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.
  •  
32.
  • D’Andrea, S. D. D., et al. (författare)
  • Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15, s. 2247-2268
  • Tidskriftsartikel (refereegranskat)abstract
    • Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.
  •  
33.
  • Darbieu, C., et al. (författare)
  • Turbulence vertical structure of the boundary layer during the afternoon transition
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:17, s. 10071-10086
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the decay of planetary boundary layer (PBL) turbulence in the afternoon, from the time the surface buoyancy flux starts to decrease until sunset. Dense observations of mean and turbulent parameters were acquired during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field experiment by several meteorological surface stations, sounding balloons, radars, lidars and two aircraft during the afternoon transition. We analysed a case study based on some of these observations and large-eddy simulation (LES) data focusing on the turbulent vertical structure throughout the afternoon transition. The decay of turbulence is quantified through the temporal and vertical evolution of (1) the turbulence kinetic energy (TKE), (2) the characteristic length scales of turbulence and (3) the shape of the turbulence spectra. A spectral analysis of LES data, airborne and surface measurements is performed in order to characterize the variation in the turbulent decay with height and study the distribution of turbulence over eddy size. This study highlights the LES ability to reproduce the turbulence evolution throughout the afternoon. LESs and observations agree that the afternoon transition can be divided in two phases: (1) a first phase during which the TKE decays at a low rate, with no significant change in turbulence characteristics, and (2) a second phase characterized by a larger TKE decay rate and a change in spectral shape, implying an evolution of eddy size distribution and energy cascade from low to high wave number. The changes observed either in TKE decay (during the first phase) or in the vertical wind spectra shape (during the second phase of the afternoon transition) occur first in the upper region of the PBL. The higher within the PBL, the stronger the spectra shape changes.
  •  
34.
  • Degrendele, C., et al. (författare)
  • Pesticides in the atmosphere : a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus Publications. - 1680-7316 .- 1680-7324. ; 16:3, s. 1531-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles (> 3.0 mu m), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (re-gardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.
  •  
35.
  • Duncan, David, 1988, et al. (författare)
  • An update on atmospheric ice estimates from satellite observations and reanalyses
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:15, s. 11205-11219
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assesses the global distribution of mean atmospheric ice mass from current state-of-the-art estimates and its variability on daily and seasonal timescales. Ice water path (IWP) retrievals from active and passive satellite platforms are analysed and compared with estimates from two reanalysis data sets, ERA5 (European Centre for Medium-range Weather Forecasts Reanalysis 5, ECMWF) and MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications 2). Large discrepancies in IWP exist between the satellite data sets themselves, making validation of the model results problematic and indicating that progress towards a consensus on the distribution of atmospheric ice has been limited. Comparing the data sets, zonal means of IWP exhibit similar shapes but differing magnitudes, with large IWP values causing much of the difference in means. Diurnal analysis centred on A-Train overpasses shows similar structures in some regions, but the degree and sign of the variability varies widely; the reanalyses exhibit noisier and higher-amplitude diurnal variability than borne out by the satellite estimates. Spatial structures governed by the atmospheric general circulation are fairly consistent across the data sets, as principal component analysis shows that the patterns of seasonal variability line up well between the data sets but disagree in severity. These results underscore the limitations of the current Earth observing system with respect to atmospheric ice, as the level of consensus between observations is mixed. The large-scale variability of IWP is relatively consistent, whereas disagreements on diurnal variability and global means point to varying microphysical assumptions in retrievals and models alike that seem to underlie the biggest differences.
  •  
36.
  • Duncan, David, 1988, et al. (författare)
  • On the distinctiveness of observed oceanic raindrop distributions
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:10, s. 6969-6984
  • Tidskriftsartikel (refereegranskat)abstract
    • Representation of the drop size distribution (DSD) of rainfall is a key element of characterizing precipitation in models and observations, with a functional form necessary to calculate the precipitation flux and the drops' interaction with radiation. With newly available oceanic disdrometer measurements, this study investigates the validity of commonly used DSDs, potentially useful a priori constraints for retrievals, and the impacts of DSD variability on radiative transfer. These data are also compared with leading satellite-based estimates over ocean, with the disdrometers observing a larger number of small drops and significantly more variability in number concentrations. This indicates that previous appraisals of raindrop variability over ocean may have been underestimates. Forward model errors due to DSD variability are shown to be significant for both active and passive sensors. The modified gamma distribution is found to be generally adequate to describe rain DSDs but may cause systematic errors for high-latitude or stratocumulus rain retrievals. Depending on the application, an exponential or generalized gamma function may be preferable for representing oceanic DSDs. An unsupervised classification algorithm finds a variety of DSD shapes that differ from commonly used DSDs but does not find a singular set that best describes the global variability.
  •  
37.
  • Evangeliou, N., et al. (författare)
  • Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:12, s. 7587-7604
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002-2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory - northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory. During the 12-year period, an average area of 250aEuro-000aEuro-km(2)aEuro-yr(-1) was burned in northern Eurasia (FEI-NE) and the global emissions of BC ranged between 8.0 and 9.5aEuro-TgaEuro-yr(-1) (FEI-NE+MACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NE+MACCity), about 70aEuro-% originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE+MACCity inventory, we found that 102aEuro-+/- aEuro-29aEuro-ktaEuro-yr(-1) BC was deposited in the Arctic (defined here as the area north of 67A degrees aEuro-N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56aEuro-+/- aEuro-8aEuro-ktaEuro-yr(-1)). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37aEuro-% in 2009 (78 vs. 57aEuro-ktaEuro-yr(-1)) to 181aEuro-% in 2012 (153 vs. 54aEuro-ktaEuro-yr(-1)), compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere thus represents 68aEuro-% of the BC deposited from all BC sources (the remaining being due to anthropogenic sources). Northern Eurasian vegetation fires (FEI-NE) contributed 85aEuro-% (79-91aEuro-%) to the BC deposited over the Arctic from all BB sources in the Northern Hemisphere. We estimate that about 46aEuro-% of the BC deposited over the Arctic from vegetation fires in northern Eurasia originated from Siberia, 6aEuro-% from Kazakhstan, 5aEuro-% from Europe, and about 1aEuro-% from Mongolia. The remaining 42aEuro-% originated from other areas in northern Eurasia. About 42aEuro-% of the BC released from northern Eurasian vegetation fires was deposited over the Arctic (annual average: 17aEuro-%) during spring and summer.
  •  
38.
  • Faber, Anne Katrine, et al. (författare)
  • How does sea ice influence δ18O of Arctic precipitation?
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:9, s. 5865-5876
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates how variations in Arctic sea ice and sea surface conditions influence δ18O of present-day Arctic precipitation. This is done using the model isoCAM3, an isotope-equipped version of the National Center for Atmospheric Research Community Atmosphere Model version 3. Four sensitivity experiments and one control simulation are performed with prescribed sea surface temperature (SST) and sea ice. Each of the four experiments simulates the atmospheric and isotopic response to Arctic oceanic conditions for selected years after the beginning of the satellite era in 1979. Changes in sea ice extent and SSTs have different impacts in Greenland and the rest of the Arctic. The simulated changes in central Arctic sea ice do not influence δ18O of Greenland precipitation, only anomalies of Baffin Bay sea ice. However, this does not exclude the fact that simulations based on other sea ice and sea surface temperature distributions might yield changes in the δ18O of precipitation in Greenland. For the Arctic, δ18O of precipitation and water vapour is sensitive to local changes in sea ice and sea surface temperature and the changes in water vapour are surface based. Reduced sea ice extent yields more enriched isotope values, whereas increased sea ice extent yields more depleted isotope values. The distribution of the sea ice and sea surface conditions is found to be essential for the spatial distribution of the simulated changes in δ18O.
  •  
39.
  • Fanourgakis, George S., et al. (författare)
  • Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:13, s. 8591-8617
  • Tidskriftsartikel (refereegranskat)abstract
    • A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters >50 and >120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (Nd=Na) and to updraft velocity (Nd=w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities Nd=Na and Nd=w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.
  •  
40.
  • Faxon, Cameron, et al. (författare)
  • Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18, s. 5467-5481
  • Tidskriftsartikel (refereegranskat)abstract
    • The gas-phase nitrate radical (NO 3 • ) initiated oxidation of limonene can produce organic nitrate species with varying physical properties. Low-volatility products can contribute to secondary organic aerosol (SOA) formation and organic nitrates may serve as a NO x reservoir, which could be especially important in regions with high biogenic emissions. This work presents the measurement results from flow reactor studies on the reaction of NO 3 • with limonene using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) combined with a Filter Inlet for Gases and AEROsols (FIGAERO). Major condensed-phase species were compared to those in the Master Chemical Mechanism (MCM) limonene mechanism, and many non-listed species were identified. The volatility properties of the most prevalent organic nitrates in the produced SOA were determined. Analysis of multiple experiments resulted in the identification of several dominant species (including C 10 H 15 NO 6 , C 10 H 17 NO 6 , C 8 H 11 NO 6 , C 10 H 17 NO 7 , and C 9 H 13 NO 7 ) that occurred in the SOA under all conditions considered. Additionally, the formation of dimers was consistently observed and these species resided almost completely in the particle phase. The identities of these species are discussed, and formation mechanisms are proposed. Cluster analysis of the desorption temperatures corresponding to the analyzed particle-phase species yielded at least five distinct groupings based on a combination of molecular weight and desorption profile. Overall, the results indicate that the oxidation of limonene by NO 3 • produces a complex mixture of highly oxygenated monomer and dimer products that contribute to SOA formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 186
Typ av publikation
tidskriftsartikel (184)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (186)
Författare/redaktör
Kulmala, Markku (17)
Riipinen, Ilona (15)
Tunved, Peter (15)
Krejci, Radovan (10)
Roldin, Pontus (10)
Hallquist, Mattias, ... (9)
visa fler...
Petäjä, Tuukka (9)
Ekman, Annica M. L. (8)
Swietlicki, Erik (8)
Kristensson, Adam (7)
Sellegri, Karine (7)
Kerminen, Veli-Matti (7)
Ehn, Mikael (7)
Li, X. (6)
Ström, Johan (6)
Simpson, David, 1961 (6)
Hu, M. (6)
Eriksson, Patrick, 1 ... (6)
Wiedensohler, Alfred (6)
Virtanen, Annele (6)
Baltensperger, Urs (6)
Murtagh, Donal, 1959 (6)
Boy, Michael (6)
Bender, Frida A.-M. (6)
Ahlm, Lars (5)
Zheng, J. (5)
Le Breton, Michael, ... (5)
Mohr, Claudia (5)
Wängberg, Ingvar (5)
Lihavainen, Heikki (5)
Kulmala, M (4)
Ahlberg, Erik (4)
Munthe, John (4)
Gumbel, Jörg (4)
Hansson, Hans-Christ ... (4)
Zieger, Paul (4)
Laj, Paolo (4)
Svenningsson, Birgit ... (4)
Artaxo, Paulo (4)
Mihalopoulos, Nikola ... (4)
Duplissy, Jonathan (4)
Petaja, Tuukka (4)
Worsnop, Douglas R. (4)
Angot, H. (4)
Skov, H. (4)
Dommergue, A. (4)
Huang, Wei (4)
Sun, Junying (4)
Backman, John (4)
Perot, Kristell, 198 ... (4)
visa färre...
Lärosäte
Stockholms universitet (96)
Lunds universitet (34)
Chalmers tekniska högskola (30)
Göteborgs universitet (24)
IVL Svenska Miljöinstitutet (12)
Uppsala universitet (5)
visa fler...
Umeå universitet (3)
Linköpings universitet (2)
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Örebro universitet (1)
Malmö universitet (1)
RISE (1)
visa färre...
Språk
Engelska (186)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (177)
Teknik (3)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy