SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gonzalez Carlos A.) srt2:(2020-2024)"

Sökning: WFRF:(Gonzalez Carlos A.) > (2020-2024)

  • Resultat 31-40 av 69
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Insausti, Ricardo, et al. (författare)
  • Ex vivo, in situ perfusion protocol for human brain fixation compatible with microscopy, MRI techniques, and anatomical studies
  • 2023
  • Ingår i: Frontiers in Neuroanatomy. - : Frontiers Media SA. - 1662-5129. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol for the human brain, by adapting protocols that are commonly used in experimental animal studies. We show that a variety of histological procedures can be carried out (cyto- and myeloarchitectonics, histochemistry, immunohistochemistry, intracellular cell injection, and electron microscopy). In addition, ex vivo, ex situ high-resolution MRI (9.4T) can be obtained in the same specimens. This procedure resulted in similar morphological features to those obtained by intravascular perfusion in experimental animals, provided that the postmortem interval was under 10 h for several of the techniques used and under 4 h in the case of intracellular injections and electron microscopy. The use of intravascular fixation of the brain inside the skull provides a fixed whole human brain, perfectly fitted to the skull, with negligible deformation compared to conventional techniques. Given this characteristic of ex vivo, in situ fixation, this procedure can probably be considered the most suitable one available for ex vivo MRI scans of the brain. We describe the compatibility of the method proposed for intravascular fixation of the human brain and fixation of the donor’s body for anatomical purposes. Thus, body donor programs can provide human brain tissue, while the remainder of the body can also be fixed for anatomical studies. Therefore, this method of human brain fixation through the carotid system optimizes the procurement of human brain tissue, allowing a greater understanding of human neurological diseases, while benefiting anatomy departments by making the remainder of the body available for teaching purposes.
  •  
32.
  • Jansen, Iris E, et al. (författare)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n=8074; replication n=5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
33.
  • Lu, R.S., et al. (författare)
  • A ring-like accretion structure in M87 connecting its black hole and jet
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 616:7958, s. 686-690
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.
  •  
34.
  •  
35.
  • Roh, Hyung S., et al. (författare)
  • Integrating Color Deconvolution Thresholding and Weakly Supervised Learning for Automated Segmentation of Neurofibrillary Tangle and Neuropil Threads
  • 2023
  • Ingår i: Medical Imaging 2023 : Digital and Computational Pathology - Digital and Computational Pathology. - 1605-7422. - 9781510660472 ; 12471
  • Konferensbidrag (refereegranskat)abstract
    • Abnormally phosphorylated tau proteins are known to be a major indicator of Alzheimer's Disease (AD) with strong association with memory loss and cognitive decline. Automated generation of pixel-wise accurate neurofibrillary tangles (NFTs) and neuropil threads (NTs) segmentation is a challenging task, due to lack of ground truth segmentation data of these abnormal tau pathology. This problem is most prominent in the case of segmenting NTs, where the small threadlike morphology makes pixel-wise labeling a laborious task and unrealistic for large-scale studies. Lack of ground truth data poses a significant limitation for many learning-based methods to generate accurate segmentations of NFTs and NTs. This work presents an automated pipeline for pixel level segmentation of NFTs and NTs that does not rely on ground truth segmentation data. The pipeline is composed of four main steps: (1) color deconvolution is used to separate histopathology images into staining channels (DAB, Hematoxylin, and Eosin), (2) Otsu's thresholding is used on the DAB stain channel to generate pixel level segmentation of abnormal tau proteins staining, (3) a weakly-supervised learning paradigm (WildCat), using only global descriptors of images, is used to generate density maps of potential regions of NFTs and NTs, and (4) density maps and segmentations are then integrated using connected component analysis to localize NFTs and NTs in the detected tau segmentations. Our results show high global classification accuracy for NFTs (Acc:0.96) and NTs (Acc:0.91), and statistically significant distinctions when evaluating the percent area occupied of the detected NTs relative to expert ratings of NTs severity. Qualitative assessment of the NFTs and NTs results showed accurate pixel-level segmentations of the NFTs, while modest performance for NTs.
  •  
36.
  • Yushkevich, Paul A., et al. (författare)
  • Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe
  • 2021
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2784-2797
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.
  •  
37.
  • Baenas, Isabel, et al. (författare)
  • Impact of COVID-19 Lockdown in Eating Disorders : A Multicentre Collaborative International Study
  • 2022
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. The COVID-19 lockdown has had a significant impact on mental health. Patients with eating disorders (ED) have been particularly vulnerable. Aims. (1) To explore changes in eating-related symptoms and general psychopathology during lockdown in patients with an ED from various European and Asian countries; and (2) to assess differences related to diagnostic ED subtypes, age, and geography. Methods. The sample comprised 829 participants, diagnosed with an ED according to DSM-5 criteria from specialized ED units in Europe and Asia. Participants were assessed using the COVID-19 Isolation Scale (CIES). Results. Patients with binge eating disorder (BED) experienced the highest impact on weight and ED symptoms in comparison with other ED subtypes during lockdown, whereas individuals with other specified feeding and eating disorders (OFSED) had greater deterioration in general psychological functioning than subjects with other ED subtypes. Finally, Asian and younger individuals appeared to be more resilient. Conclusions. The psychopathological changes in ED patients during the COVID-19 lockdown varied by cultural context and individual variation in age and ED diagnosis. Clinical services may need to target preventive measures and adapt therapeutic approaches for the most vulnerable patients.
  •  
38.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
39.
  • Bott, Lukas Thomas, et al. (författare)
  • Coulomb dissociation of O-16 into He-4 and C-12
  • 2023
  • Ingår i: NUCLEAR PHYSICS IN ASTROPHYSICS - X, NPA-X 2022. - : EDP Sciences. - 2100-014X. ; 279
  • Konferensbidrag (refereegranskat)abstract
    • We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4.
  •  
40.
  • de Erausquin, Gabriel A, et al. (författare)
  • Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium.
  • 2022
  • Ingår i: Alzheimer's & dementia (New York, N. Y.). - : Wiley. - 2352-8737. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term.This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions.Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe.The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection.The following review describes what is known so far in terms of molecular and epidemiological links among COVID-19, the brain, neurological symptoms, and AD and related dementias (ADRD)The primary objective of this large-scale collaboration is to clarify the pathogenesis of ADRD and to advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive decline and other CNS sequelae. No available evidence supports the notion that cognitive impairment after SARS-CoV-2 infection is a form of dementia (ADRD or otherwise). The longitudinal methodologies espoused by the consortium are intended to provide data to answer this question as clearly as possible controlling for possible confounders. Our specific hypothesis is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory cortical network (EOCN) in older individuals with specific genetic susceptibility.The proposed harmonization strategies and flexible study designs offer the possibility to include large samples of under-represented racial and ethnic groups, creating a rich set of harmonized cohorts for future studies of the pathophysiology, determinants, long-term consequences, and trends in cognitive aging, ADRD, and vascular disease.We provide a framework for current and future studies to be carried out within the Consortium. and offers a "green paper" to the research community with a very broad, global base of support, on tools suitable for low- and middle-income countries aimed to compare and combine future longitudinal data on the topic.The Consortium proposes a combination of design and statistical methods as a means of approaching causal inference of the COVID-19 neuropsychiatric sequelae. We expect that deep phenotyping of neuropsychiatric sequelae may provide a series of candidate syndromes with phenomenological and biological characterization that can be further explored. By generating high-quality harmonized data across sites we aim to capture both descriptive and, where possible, causal associations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 69
Typ av publikation
tidskriftsartikel (54)
forskningsöversikt (7)
konferensbidrag (5)
bokkapitel (1)
Typ av innehåll
refereegranskat (66)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Silva, M. (12)
Bernardini, E. (9)
Chen, C. (8)
Kolanoski, H. (8)
Moore, R. W. (8)
Nagai, R. (8)
visa fler...
Bai, X. (8)
Snihur, R. (8)
Kowalski, M. (8)
Van Eijndhoven, N. (8)
Ackermann, M. (8)
Adams, J. (8)
Aguilar, J. A. (8)
Barwick, S. W. (8)
Bay, R. (8)
Beatty, J. J. (8)
BenZvi, S. (8)
Berley, D. (8)
Besson, D. Z. (8)
Binder, G. (8)
Blaufuss, E. (8)
Braun, J. (8)
Chirkin, D. (8)
Classen, L. (8)
Cowen, D. F. (8)
De Clercq, C. (8)
Desiati, P. (8)
de Vries, K. D. (8)
de Wasseige, G. (8)
DeYoung, T. (8)
Diaz-Velez, J. C. (8)
Ehrhardt, T. (8)
Fazely, A. R. (8)
Gerhardt, L. (8)
Gonzalez, J. G. (8)
Grant, D. (8)
Halzen, F. (8)
Hanson, K. (8)
Helbing, K. (8)
Hickford, S. (8)
Hoffman, K. D. (8)
Hoshina, K. (8)
In, S. (8)
Ishihara, A. (8)
Japaridze, G. S. (8)
Kappes, A. (8)
Karg, T. (8)
Karle, A. (8)
Kauer, M. (8)
Kelley, J. L. (8)
visa färre...
Lärosäte
Uppsala universitet (24)
Lunds universitet (23)
Chalmers tekniska högskola (15)
Karolinska Institutet (14)
Stockholms universitet (13)
Göteborgs universitet (7)
visa fler...
Linköpings universitet (4)
Umeå universitet (3)
Kungliga Tekniska Högskolan (3)
Naturhistoriska riksmuseet (3)
Luleå tekniska universitet (2)
Sveriges Lantbruksuniversitet (2)
Örebro universitet (1)
Malmö universitet (1)
Handelshögskolan i Stockholm (1)
Linnéuniversitetet (1)
Högskolan i Borås (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (69)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (31)
Medicin och hälsovetenskap (29)
Teknik (8)
Lantbruksvetenskap (3)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy