SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ling Charlotte) srt2:(2010-2014)"

Sökning: WFRF:(Ling Charlotte) > (2010-2014)

  • Resultat 31-40 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Olsson, Anders H, et al. (författare)
  • Genome-Wide Associations between Genetic and Epigenetic Variation Influence mRNA Expression and Insulin Secretion in Human Pancreatic Islets.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in pancreatic β-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation interacts to influence gene expression, islet function and potential diabetes risk in humans.
  •  
32.
  • Olsson, Anders H, et al. (författare)
  • The expression of myosin heavy chain (MHC) genes in human skeletal muscle is related to metabolic characteristics involved in the pathogenesis of type 2 diabetes.
  • 2011
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier BV. - 1096-7192. ; 103, s. 275-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes patients exhibit a reduction in oxidative muscle fibres and an increase in glycolytic muscle fibres. In this study, we investigated whether both genetic and non-genetic factors influence the mRNA expression levels of three myosin heavy chain (MHC) genes represented in different fibre types. Specifically, we examined the MHC7 (slow-twitch oxidative fibre), MHCIIa (fast-twitch oxidative fibre) and MHCIIx/d (fast-twitch glycolytic fibre) genes in human skeletal muscle. We further investigated the use of MHC mRNA expression as a proxy to determine fibre-type composition, as measured by traditional ATP staining. Two cohorts of age-matched Swedish men were studied to determine the relationship of muscle mRNA expression of MHC7, MHCIIa, and MHCIIx/d with muscle fibre composition. A classical twin approach, including young and elderly Danish twin pairs, was utilised to examine if differences in expression levels were due to genetic or environmental factors. Although MHCIIx/d mRNA expression correlated positively with the level of type IIx/d muscle fibres in the two cohorts (P<0.05), a relatively low magnitude of correlation suggests that mRNA does not fully correlate with fibre-type composition. Heritability estimates and genetic analysis suggest that the levels of MHC7, MHCIIa and MHCIIx/d expression are primarily under non-genetic influence, and MHCIIa indicated an age-related decline. PGC-1α exhibited a positive relationship with the expression of all three MHC genes (P<0.05); meanwhile, PGC-1β related positively with MHCIIa expression and negatively with MHCIIx/d expression (P<0.05). While MHCIIa expression related positively with insulin-stimulated glucose uptake (P<0.01), MHCIIx/d expression related negatively with insulin-stimulated glucose uptake (P<0.05). Our findings suggest that the expression levels of the MHC genes are associated with age and both PGC-1α and PGC-1β and indicate that the MHC genes may to some extent be used to determine fibre-type composition in human skeletal muscle.
  •  
33.
  • Olsson, Anders H, et al. (författare)
  • Two common genetic variants near nuclear encoded OXPHOS genes are associated with insulin secretion in vivo.
  • 2011
  • Ingår i: European Journal of Endocrinology. - 1479-683X. ; 164:5, s. 765-771
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Mitochondrial ATP production is important in the regulation of glucose-stimulated insulin secretion. Genetic factors may modulate the capacity of the β-cells to secrete insulin and thereby contribute to the risk of type 2 diabetes. OBJECTIVE: The aim of this study was to identify genetic loci in or adjacent to nuclear encoded genes of the oxidative phosphorylation (OXPHOS) pathway that are associated with insulin secretion in vivo. DESIGN AND METHODS: To find polymorphisms associated with glucose-stimulated insulin secretion, data from a genome-wide association study (GWAS) of 1467 non-diabetic individuals, the Diabetes Genetic Initiative (DGI), was examined. 413 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) ≥0.05 located in or adjacent to 76 OXPHOS genes were included in the DGI GWAS. A more extensive population based study of 4323 non-diabetics, the PPP-Botnia, was used as a replication cohort. Insulinogenic index during an oral glucose tolerance test (OGTT) was used as a surrogate marker of glucose-stimulated insulin secretion. Multivariate linear regression analyses were used to test genotype-phenotype associations. RESULTS: Two common variants were indentified in the DGI, where the major C-allele of rs606164, adjacent to NDUFC2 (NADH dehyrogenase (ubiqinone) 1 subunit C2), and the minor G-allele of rs1323070, adjacent to COX7A2 (cythochrome c oxidase subunit VIIa polypeptide 2), showed nominal associations with decreased glucose-stimulated insulin secretion (p=0.0009 respective p=0.003). These associations were replicated in PPP-Botnia (p=0.002 and p=0.05). CONCLUSION: Our study shows that genetic variation near genes involved in oxidative phosphorylation may influence glucose-stimulated insulin secretion in vivo.
  •  
34.
  • Prokopenko, Inga, et al. (författare)
  • A Central Role for GRB10 in Regulation of Islet Function in Man.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
  •  
35.
  • Reiling, Erwin, et al. (författare)
  • The Association of Mitochondrial Content with Prevalent and Incident Type 2 Diabetes.
  • 2010
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 95, s. 1909-1915
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: It has been shown that mitochondrial DNA (mtDNA) content is associated with type 2 diabetes (T2D) and related traits. However, empirical data, often based on small samples, did not confirm this observation in all studies. Therefore, the role of mtDNA content in T2D remains elusive. Objective: In this study, we assessed the heritability of mtDNA content in buccal cells and analyzed the association of mtDNA content in blood with prevalent and incident T2D. Design and Setting: mtDNA content from cells from buccal and blood samples was assessed using a real-time PCR-based assay. Heritability of mtDNA content was estimated in 391 twins from the Netherlands Twin Register. The association with prevalent T2D was tested in a case control study from The Netherlands (n = 329). Incident T2D was analyzed using prospective samples from Finland (n = 444) and The Netherlands (n = 238). Main Outcome Measures: We measured the heritability of mtDNA content and the association of mtDNA content in blood with prevalent and incident T2D. Results: A heritability of mtDNA content of 35% (19-48%) was estimated in the twin families. We did not observe evidence of an association between mtDNA content and prevalent or incident T2D and related traits. Furthermore, we observed a decline in mtDNA content with increasing age that was male specific (P = 0.001). Conclusion: In this study, we show that mtDNA content has a heritability of 35% in Dutch twins. There is no association between mtDNA content in blood and prevalent or incident T2D and related traits in our study samples.
  •  
36.
  • Riva, Matteo, et al. (författare)
  • Nesfatin-1 stimulates glucagon and insulin secretion and beta cell NUCB2 is reduced in human type 2 diabetic subjects.
  • 2011
  • Ingår i: Cell and Tissue Research. - : Springer Science and Business Media LLC. - 1432-0878 .- 0302-766X. ; 346, s. 393-405
  • Tidskriftsartikel (refereegranskat)abstract
    • Nesfatin-1 is a novel anorexigenic regulatory peptide. The peptide is the N-terminal part of nucleobindin 2 (NUCB2) and is expressed in brain areas regulating feeding. Outside the brain, nesfatin-1 expression has been reported in adipocytes, gastric endocrine cells and islet cells. We studied NUCB2 expression in human and rodent islets using immunocytochemistry, in situ hybridization and western blot. Furthermore, we investigated the potential influence of nesfatin-1 on secretion of insulin and glucagon in vitro and in vivo in mice and in INS-1 (832/13) cells. The impact of type 2 diabetes (T2D) and glucolipotoxicity on NUCB2 gene expression in human islets and its relationship to insulin secretory capacity and islet gene expression was studied using microarray. Nesfatin-1 immunoreactivity (IR) was abundant in human and rodent beta cells but absent in alpha, delta, PP and ghrelin cells. Importantly, in situ hybridization showed that NUCB2 mRNA is expressed in human and rat islets. Western blot analysis showed that nesfatin-1 IR represented full length NUCB2 in rodent islets. Human islet NUCB2 mRNA was reduced in T2D subjects but upregulated after culture in glucolipotoxic conditions. Furthermore, a positive correlation between NUCB2 and glucagon and insulin gene expression, as well as insulin secretory capacity, was evident. Nesfatin-1 enhanced glucagon secretion but had no effect on insulin secretion from mouse islets or INS-1 (832/13) cells. On the other hand, nesfatin-1 caused a small increase in insulin secretion and reduced glucose during IVGTT in mice. We conclude that nesfatin-1 is a novel glucagon-stimulatory peptide expressed in the beta cell and that its expression is decreased in T2D islets.
  •  
37.
  • Rönn, Tina, et al. (författare)
  • A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue.
  • 2013
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.
  •  
38.
  •  
39.
  • Rönn, Tina, et al. (författare)
  • Extensive changes in the transcriptional profile of human adipose tissue including genes involved in oxidative phosphorylation after a six months exercise intervention.
  • 2014
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1716 .- 1748-1708. ; 211:1, s. 188-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Adipose tissue has an important function in total energy homeostasis and its dysregulation may contribute to life-style related diseases such as type 2 diabetes, cancer and cardiovascular diseases. The aim of this study was to investigate genome-wide mRNA expression in adipose tissue in healthy men before and after an exercise intervention to identify genes or pathways that mediate the beneficial effect of regular exercise. We also investigated the difference in adipose tissue mRNA expression between individuals with or without a family history of type 2 diabetes.
  •  
40.
  • Sandovici, Ionel, et al. (författare)
  • Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 108:13, s. 5449-5454
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental factors interact with the genome throughout life to determine gene expression and, consequently, tissue function and disease risk. One such factor that is known to play an important role in determining long-term metabolic health is diet during critical periods of development. Epigenetic regulation of gene expression has been implicated in mediating these programming effects of early diet. The precise epigenetic mechanisms that underlie these effects remain largely unknown. Here, we show that the transcription factor Hnf4a, which has been implicated in the etiology of type 2 diabetes (T2D), is epigenetically regulated by maternal diet and aging in rat islets. Transcriptional activity of Hnf4a in islets is restricted to the distal P2 promoter through its open chromatin configuration and an islet-specific interaction between the P2 promoter and a downstream enhancer. Exposure to suboptimal nutrition during early development leads to epigenetic silencing at the enhancer region, which weakens the P2 promoter-enhancer interaction and results in a permanent reduction in Hnf4a expression. Aging leads to progressive epigenetic silencing of the entire Hnf4a locus in islets, an effect that is more pronounced in rats exposed to a poor maternal diet. Our findings provide evidence for environmentally induced epigenetic changes at the Hnf4a enhancer that alter its interaction with the P2 promoter, and consequently determine T2D risk. We therefore propose that environmentally induced changes in promoter-enhancer interactions represent a fundamental epigenetic mechanism by which nutrition and aging can influence long-term health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy