SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0003 0007 srt2:(2020-2024)"

Sökning: L773:0003 0007 > (2020-2024)

  • Resultat 1-25 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cooper, Steven J., et al. (författare)
  • Exploring Snowfall Variability through the High-Latitude Measurement of Snowfall (HiLaMS) Field Campaign
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 103:8, s. E1762-E1780
  • Tidskriftsartikel (refereegranskat)abstract
    • The High-Latitude Measurement of Snowfall (HiLaMS) campaign explored variability in snowfall properties and processes at meteorologically distinct field sites located in Haukeliseter, Norway, and Kiruna, Sweden, during the winters of 2016/17 and 2017/18, respectively. Campaign activities were founded upon the sensitivities of a low-cost, core instrumentation suite consisting of Micro Rain Radar, Precipitation Imaging Package, and Multi-Angle Snow Camera. These instruments are highly portable to remote field sites and, considered together, provide a unique and complementary set of snowfall observations including snowflake habit, particle size distributions, fall speeds, surface snowfall accumulations, and vertical profiles of radar moments and snow water content. These snow-specific parameters, used in combination with existing observations from the field sites such as snow gauge accumulations and ambient weather conditions, allow for advanced studies of snowfall processes. HiLaMS observations were used to 1) successfully develop a combined radar and in situ microphysical property retrieval scheme to estimate both surface snowfall accumulation and the vertical profile of snow water content, 2) identify the predominant snowfall regimes at Haukeliseter and Kiruna and characterize associated macrophysical and microphysical properties, snowfall production, and meteorological conditions, and 3) identify biases in the HARMONIE-AROME numerical weather prediction model for forecasts of snowfall accumulations and vertical profiles of snow water content for the distinct snowfall regimes observed at the mountainous Haukeliseter site. HiLaMS activities and results suggest value in the deployment of this enhanced snow observing instrumentation suite to new and diverse high-latitude locations that may be underrepresented in climate and weather process studies.
  •  
2.
  • Abrahamsen, E. Povl, et al. (författare)
  • ANTARCTICA AND THE SOUTHERN OCEAN
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Ades, M., et al. (författare)
  • Global Climate : in State of the climate in 2019
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Ades, M., et al. (författare)
  • GLOBAL CLIMATE
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Bianchi, F., et al. (författare)
  • The SALTENA Experiment : Comprehensive Observations of Aerosol Sources, Formation, and Processes in the South American Andes
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:2, s. E212-E229
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an introduction to the Southern Hemisphere High Altitude Experiment on Particle Nucleation and Growth (SALTENA). This field campaign took place between December 2017 and June 2018 (wet to dry season) at Chacaltaya (CHC), a GAW (Global Atmosphere Watch) station located at 5,240 m MSL in the Bolivian Andes. Concurrent measurements were conducted at two additional sites in El Alto (4,000 m MSL) and La Paz (3,600 m MSL). The overall goal of the campaign was to identify the sources, understand the formation mechanisms and transport, and characterize the properties of aerosol at these stations. State-of-the-art instruments were brought to the station complementing the ongoing permanent GAW measurements, to allow a comprehensive description of the chemical species of anthropogenic and biogenic origin impacting the station and contributing to new particle formation. In this overview we first provide an assessment of the complex meteorology, airmass origin, and boundary layer-free troposphere interactions during the campaign using a 6-month high-resolution Weather Research and Forecasting (WRF) simulation coupled with Flexible Particle dispersion model (FLEXPART). We then show some of the research highlights from the campaign, including (i) chemical transformation processes of anthropogenic pollution while the air masses are transported to the CHC station from the metropolitan area of La Paz-El Alto, (ii) volcanic emissions as an important source of atmospheric sulfur compounds in the region, (iii) the characterization of the compounds involved in new particle formation, and (iv) the identification of long-range-transported compounds from the Pacific or the Amazon basin. We conclude the article with a presentation of future research foci. The SALTENA dataset highlights the importance of comprehensive observations in strategic high-altitude locations, especially the undersampled Southern Hemisphere.
  •  
6.
  • Burchard, Hans, et al. (författare)
  • Linking Ocean Mixing and Circulation
  • 2024
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 105:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Walter Munk, in his famous abyssal recipes, showed more than half a century ago that the strength of the global overturning circulation is closely linked to diapycnal mixing. Since then, oceanographic research has succeeded in identifying more and more processes generating mixing and overturning circulation: internal-wave mixing, boundary mixing, wake eddies, gravity currents, double diffusion, and many more. The same dependence was also observed in other marine systems at smaller scales, including marginal and semienclosed seas and estuaries. Numerical models describing these mechanisms often include discretization errors that become evident in particular in the form of spurious numerical mixing, which may trigger artificial circulation patterns at all scales. The Warnemünde Turbulence Days (WTD, http://www.io-warnemuende.de/wtd.html) have been established in 2003 to provide a regular international forum for discussing new developments in marine turbulence. Since then, the WTD have been organized on a biannual basis with the 11th WTD taking place during 17–20 September 2023 in Rostock. We invited contributions discussing all aspects of mixing in the ocean, especially, however, those that focus on the relation of mixing and circulation at all relevant scales.
  •  
7.
  • Carmichael, Gregory R., et al. (författare)
  • Global Atmospheric Composition Observations : The Heart of Vital Climate and Environmental Action
  • 2023
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 104:3, s. E666-E672
  • Tidskriftsartikel (refereegranskat)abstract
    • Further long-term investments in high-quality, research-driven, fit-for-purpose observations of atmospheric composition are needed globally to meet urgent societal needs related to weather, climate, air quality, and other environmental issues. Challenges include maintaining current observing systems in the face of eroding budgets for long-term monitoring and filling the geographical gaps for key constituents needed for sound services and policies. The observing systems can be bolstered through science-for-services applications, by embracing interoperable observation systems and standardized metadata, and ensuring that the data are findable, accessible, interoperable, and reusable. There is an urgent need to move from opportunities-driven one-component observations to more systematic, planned multifunctional infrastructure, where the observational data flow is coupled with Earth system models to serve both operational and research purposes. This approach fosters a community where user experience feeds back into the research components and where mature research results are translated into operational applications. This will lead to faster exploration and exploitation of atmospheric composition information and more impactful applications for science and society. We discuss here the urgent need to (i) achieve global coverage, (ii) harmonize infrastructure operations, (iii) establish focused policies, and (iv) strengthen coordination of atmospheric composition infrastructure.  
  •  
8.
  •  
9.
  • Chen, Xuelong, et al. (författare)
  • Investigation of Precipitation Process in the Water Vapor Channel of the Yarlung Zsangbo Grand Canyon
  • 2024
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 105:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yarlung Zsangbo Grand Canyon (YGC) is an important pathway for water vapor transport from southern Asia to the Tibetan Plateau (TP). This area exhibits one of the highest frequencies of convective activity in China, and precipitation often induces natural disasters in local communities, which can dramatically affect their livelihoods. In addition, the produced precipitation gives rise to vast glaciers and large rivers around the YGC. In 2018, the Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team to conduct an "investigation of the precipitation process in the water vapor channel of the Yarlung Zsangbo Grand Canyon" (INVC) in the southeastern TP. This team subsequently established a comprehensive observation system of land-air interaction, water vapor, clouds, and rainfall activity in the YGC. This paper introduces the developed observation system and summarizes the preliminary results obtained during the first two years of the project. Using this INVC observation network, herein, we focus on the development of rainfall events on the southeastern TP. This project also helps to monitor geohazards in the key area of the Sichuan-Tibet railway, which traverses the northern YGC. The observation datasets will benefit future research on mountain meteorology.
  •  
10.
  •  
11.
  • Dunn, R. J. H., et al. (författare)
  • GLOBAL CLIMATE : State of the Climate in 2020
  • 2021
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 102:8
  • Tidskriftsartikel (refereegranskat)
  •  
12.
  • Geerts, Bart, et al. (författare)
  • The COMBLE Campaign : A Study of Marine Boundary Layer Clouds in Arctic Cold-Air Outbreaks
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:5, s. E1371-E1389
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.  
  •  
13.
  • Heiskanen, Jouni, et al. (författare)
  • The Integrated Carbon Observation System in Europe
  • 2022
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:3, s. 855-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers' decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
  •  
14.
  • Janssens-Maenhout, G., et al. (författare)
  • Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity
  • 2020
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 101:8, s. 1439-1451
  • Tidskriftsartikel (refereegranskat)abstract
    • Under the Paris Agreement (PA), progress of emission reduction efforts is tracked on the basis of regular updates to national greenhouse gas (GHG) inventories, referred to as bottom-up estimates. However, only top-down atmospheric measurements can provide observation-based evidence of emission trends. Today, there is no internationally agreed, operational capacity to monitor anthropogenic GHG emission trends using atmospheric measurements to complement national bottom-up inventories. The European Commission (EC), the European Space Agency, the European Centre for Medium-Range Weather Forecasts, the European Organisation for the Exploitation of Meteorological Satellites, and international experts are joining forces to develop such an operational capacity for monitoring anthropogenic CO2 emissions as a new CO2 service under the EC's Copernicus program. Design studies have been used to translate identified needs into defined requirements and functionalities of this anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) capacity. It adopts a holistic view and includes components such as atmospheric spaceborne and in situ measurements, bottom-up CO2 emission maps, improved modeling of the carbon cycle, an operational data-assimilation system integrating top-down and bottom-up information, and a policy-relevant decision support tool. The CO2MVS capacity with operational capabilities by 2026 is expected to visualize regular updates of global CO2 emissions, likely at 0.05° x 0.05°. This will complement the PA's enhanced transparency framework, providing actionable information on anthropogenic CO2 emissions that are the main driver of climate change. This information will be available to all stakeholders, including governments and citizens, allowing them to reflect on trends and effectiveness of reduction measures. The new EC gave the green light to pass the CO2MVS from exploratory to implementing phase.
  •  
15.
  • Kornhuber, Kai, et al. (författare)
  • Recent Increase in a Recurrent Pan-Atlantic Wave Pattern Driving Concurrent Wintertime Extremes
  • 2023
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 104:9, s. e1694-E1708
  • Tidskriftsartikel (refereegranskat)abstract
    • Wintertime extremes such as cold spells and heavy precipitation can have severe socioeconomic impacts, disrupting critical infrastructures and affecting human well-being. Here, we relate the occurrence of local and concurrent cold or wet wintertime extremes in North America and Europe to a recurrent, quasi-hemispheric wave-4 Rossby wave pattern. We identify this pattern as a fundamental mode of the Northern Hemisphere (NH) winter circulation, since wave 4 exhibits phase-locking behavior. Thus, the associated atmospheric circulation and surface anomalies reoccur over the same locations when the pattern’s wave amplitude is high. The wave pattern is most pronounced over the pan-Atlantic region, and increases the probability of extreme cold or wet events by up to 300% in certain areas of North America and Europe, as well as favoring their concurrence at different locations. High-amplitude wave-4 events have increased significantly in frequency over the past four decades (1979–2021), although no clear evidence is found relating this to modes or patterns of climate variability. The identified wave pattern may provide pathways for early prediction of local and concurrent cold or wet wintertime extremes in North America and Europe.
  •  
16.
  • Lee, Hanna, et al. (författare)
  • Toward Effective Collaborations between Regional Climate Modeling and Impacts-Relevant Modeling Studies in Polar Regions
  • 2022
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:8, s. 1866-1874
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this workshop was to discuss the needs and challenges in using high-resolution climate model outputs for impacts-relevant modeling. Development of impacts-relevant climate projections in the polar regions requires effective collaboration between regional climate modelers and impacts-relevant modelers in the design stage of high-resolution climate projections for the polar regions.
  •  
17.
  • Liu, Ruishun, et al. (författare)
  • Cryosphere-Hydrometeorology Observations for a Water Tower Unit on the Tibetan Plateau Using the BeiDou-3 Navigation Satellite System
  • 2024
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 105:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Life and civilization in arid regions depend on the availability of freshwater. Arid alpine river basins, where hydrological processes are highly sensitive to rapid warming, act as vital water towers for lowland oases. However, scientific understanding of precipitation variability and related cryosphere-hydrology processes is extremely limited because of the scarcity of in situ observations. The upper Danghe River basin (UDB; similar to 14,000 km2) is an arid and westerly dominated basin on the northeastern Tibetan Plateau and is the water source for the Dunhuang Oasis in China. We have established a comprehensive cryosphere-hydrometeorology observation network in the basin since 2014. At present, the network consists of 21 automatic rain gauges, 22 soil freeze-thaw monitoring stations, 4 automatic weather stations (AWS), and a 50-m gradient meteorological tower with an eddy covariance system. In particular, the 18 sites, located in remote areas without public networks, are equipped with new -generation BeiDou-3 communication terminals that enable the observations to be easily, safely, and reliably read and quality controlled in near-real time from offices in the city or at home. This integrated observation network over the UDB that facilitates the monitoring of cryosphere-hydrology processes, land-atmosphere interactions, and local weather processes. In addition, the observations are helpful for the objective evaluation, and continual improvement, of hydrological models, satellite -retrieval products, and reanalysis datasets. Finally, the network is expected to promote a better understanding of the status and role of water towers in arid zones and to provide basic data support for the sustainable development of the Dunhuang Oasis and the Belt and Road.
  •  
18.
  • Messori, Gabriele, et al. (författare)
  • Compound Climate Events and Extremes in the Midlatitudes Dynamics, Simulation, and Statistical Characterization
  • 2021
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 102:4, s. E774-E781
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The workshop, conducted virtually due to travel restrictions related to COVID-19, gathered scientists from six countries and focused on the mechanistic understanding, statistical characterization, and modeling of societally relevant compound climate events and extremes in the midlatitudes. These ranged from co-occurring hot–humid or wet–windy extremes, to spatially compounding wet and dry extremes, to temporallycompounding hot–wet events and more. The aim was to bring together selected experts studying a diverse range of compound climate events and extremes to present their ongoing work and outline challenges and future developments in this societally relevant field of research.
  •  
19.
  • Norin, Lars, et al. (författare)
  • Anomalous Propagation and the Sinking of the Russian Warship Moskva
  • 2023
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 104:12, s. E2286-E2304
  • Tidskriftsartikel (refereegranskat)abstract
    • On 13 April 2022, the Russian warship Moskva was hit by two Ukrainian Neptune anti-ship missiles in the Black Sea, leading to its demise. Before launching an anti-ship missile, a target must first be detected and positioned, for example, by an accompanying radar system. However, when the missiles hit the Moskva she was well beyond the normal radar horizon of any ground-based radar system, making the ship undetectable under normal circumstances. Using meteorological reanalysis data, we show that at the time of the missile launch the prevailing weather conditions allowed a ground-based radar to detect targets far beyond the normal radar horizon through anomalous propagation conditions. During such conditions, the atmospheric index of refraction decreases rapidly with height, making electromagnetic radiation bend downward to, partly or fully, compensate the curvature of the Earth. The results show that atmospheric conditions must be considered carefully, even during warfare, as their impact on radar wave propagation can be considerable.
  •  
20.
  • Ortega, Pablo, et al. (författare)
  • Improving Arctic Weather and Seasonal Climate Prediction : Recommendations for Future Forecast Systems Evolution from the European Project APPLICATE
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:10, s. E2203-E2213
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic environment is changing, increasing the vulnerability of local communities and ecosystems, and impacting its socio-economic landscape. In this context, weather and climate prediction systems can be powerful tools to support strategic planning and decision-making at different time horizons. This article presents several success stories from the H2020 project APPLICATE on how to advance Arctic weather and seasonal climate prediction, synthesizing the key lessons learned throughout the project and providing recommendations for future model and forecast system development.  
  •  
21.
  • Otto, Friederike E L, et al. (författare)
  • Toward an Inventory of the Impacts of Human-Induced Climate Change
  • 2020
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 101:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Current levels of global warming (Haustein et al. 2017) have already intensified heat waves, droughts, and floods, with many recent events exhibiting evidence of being exacerbated by anthropogenic climate change (e.g., Herring et al. 2016, 2018). Recent improvements in understanding demonstrate that half a degree of additional warming will have further severe impacts (Masson-Delmotte et al. 2018). In the context of this rapid and damaging change, there is a clear need to quantify and address both the losses and damages from impacts we have not adapted to today, as well as to adapt to those that will emerge in the next few decades. To do this, it is essential to understand the impacts of man-made climate change on the scales that climate adaptation decisions are made. Drivers of disasters, ultimately responsible for much loss and damage, are unfolding in an ever-changing socioeconomic context, which also alters exposure and vulnerability. While various case studies exist (discussed below), there is to date no comprehensive or comparable database quantifying anthropogenic contributions to climate change loss and damage. We suggest that this needs to change.
  •  
22.
  • Papale, Dario, et al. (författare)
  • Standards and Open Access are the ICOS Pillars Reply to "Comments on 'The Integrated Carbon Observation System in Europe'"
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 104:12, s. 953-955
  • Tidskriftsartikel (refereegranskat)abstract
    • In his comment (Kowalski 2023) on our recent publication (Heiskanen et al. 2022) where we present the Integrated Carbon Observation System (ICOS) research infrastructure, Andrew Kowalski introduces three important and, in our opinion, different potential issues in the definition, collection, and availability of field measurements made by the ICOS network, and he proposes possible solutions to these issues.
  •  
23.
  • Pasquier, J. T., et al. (författare)
  • The Ny-Ålesund Aerosol Cloud Experiment (NASCENT) : Overview and First Results
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:11, s. e2533-E2558
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is warming at more than twice the rate of the global average. This warming is influenced by clouds, which modulate the solar and terrestrial radiative fluxes and, thus, determine the surface energy budget. However, the interactions among clouds, aerosols, and radiative fluxes in the Arctic are still poorly understood. To address these uncertainties, the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) study was conducted from September 2019 to August 2020 in Ny-Ålesund, Svalbard. The campaign’s primary goal was to elucidate the life cycle of aerosols in the Arctic and to determine how they modulate cloud properties throughout the year. In situ and remote sensing observations were taken on the ground at sea level, at a mountaintop station, and with a tethered balloon system. An overview of the meteorological and the main aerosol seasonality encountered during the NASCENT year is introduced, followed by a presentation of first scientific highlights. In particular, we present new findings on aerosol physicochemical and molecular properties. Further, the role of cloud droplet activation and ice crystal nucleation in the formation and persistence of mixed-phase clouds, and the occurrence of secondary ice processes, are discussed and compared to the representation of cloud processes within the regional Weather Research and Forecasting Model. The paper concludes with research questions that are to be addressed in upcoming NASCENT publications.  
  •  
24.
  •  
25.
  • Persson, Anders (författare)
  • Right for the Wrong Reason? : A New Look at the 6 June 1944 D-Day Forecast by a Neutral Swede
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : AMER METEOROLOGICAL SOC. - 0003-0007 .- 1520-0477. ; 101:7, s. E993-E1006
  • Tidskriftsartikel (refereegranskat)abstract
    • There are at least three popular perceptions surrounding the weather forecast for the D-day landing in Normandy, 6 June 1994: 1) that the Allied weather forecasters predicted a crucial break or "window of opportunity" in the unsettled weather prevailing at the time; 2) that the German meteorologists, lacking observations from the North Atlantic, failed to see this break coming and thus the invasion took the Wehrmacht by surprise; and 3) that the American forecasters, guided by a skillful analog system, predicted the favorable conditions several days ahead but got no support from their pessimistic British colleagues. This article will present evidence taken mostly from hitherto rather neglected sources of information, transcripts of the telephone discussions between the Allied forecasters and archived German weather analyses. They show that 1) the synoptic development for the invasion was not particularly well predicted and, if there was a break in the weather, it occurred for reasons other than those predicted; 2) the German forecasters were fairly well informed about the large-scale synoptic situation over most of the North Atlantic, probably thanks to decoded American analyses; and 3) from the viewpoint of a "neutral Swede," the impression is that the American analog method might not have performed as splendidly as its adherents have claimed, but also not as badly as its critics have alleged. Finally, the D-day forecast, the discussions among the forecasters, and their briefings with the Allied command are interesting not only from a historical perspective, but also as an early and well-documented example of decision-making under meteorological uncertainty.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy