SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0267 8357 OR L773:1464 3804 srt2:(2015-2019)"

Sökning: L773:0267 8357 OR L773:1464 3804 > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Assi, Nada, et al. (författare)
  • A statistical framework to model the meeting-in-the-middle principle using metabolomic data : application to hepatocellular carcinoma in the EPIC study
  • 2015
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 30:6, s. 743-753
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolomics is a potentially powerful tool for identification of biomarkers associated with lifestyle exposures and risk of various diseases. This is the rationale of the 'meeting-in-the-middle' concept, for which an analytical framework was developed in this study. In a nested case-control study on hepatocellular carcinoma (HCC) within the European Prospective Investigation into Cancer and nutrition (EPIC), serum H-1 nuclear magnetic resonance (NMR) spectra (800 MHz) were acquired for 114 cases and 222 matched controls. Through partial least square (PLS) analysis, 21 lifestyle variables (the 'predictors', including information on diet, anthropometry and clinical characteristics) were linked to a set of 285 metabolic variables (the 'responses'). The three resulting scores were related to HCC risk by means of conditional logistic regressions. The first PLS factor was not associated with HCC risk. The second PLS metabolomic factor was positively associated with tyrosine and glucose, and was related to a significantly increased HCC risk with OR = 1.11 (95% CI: 1.02, 1.22, P = 0.02) for a 1SD change in the responses score, and a similar association was found for the corresponding lifestyle component of the factor. The third PLS lifestyle factor was associated with lifetime alcohol consumption, hepatitis and smoking, and had negative loadings on vegetables intake. Its metabolomic counterpart displayed positive loadings on ethanol, glutamate and phenylalanine. These factors were positively and statistically significantly associated with HCC risk, with 1.37 (1.05, 1.79, P = 0.02) and 1.22 (1.04, 1.44, P = 0.01), respectively. Evidence of mediation was found in both the second and third PLS factors, where the metabolomic signals mediated the relation between the lifestyle component and HCC outcome. This study devised a way to bridge lifestyle variables to HCC risk through NMR metabolomics data. This implementation of the 'meeting-in-the-middle' approach finds natural applications in settings characterised by high-dimensional data, increasingly frequent in the omics generation.
  •  
2.
  • Di Bucchianico, S., et al. (författare)
  • Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry
  • 2017
  • Ingår i: Mutagenesis. - : Oxford University Press. - 0267-8357 .- 1464-3804. ; 32:1, s. 127-137
  • Tidskriftsartikel (refereegranskat)abstract
    • The widespread production and use of nanoparticles calls for faster and more reliable methods to assess their safety. The main aim of this study was to investigate the genotoxicity of three reference TiO2 nanomaterials (NM) within the frame of the FP7-NANoREG project, with a particular focus on testing the applicability of mini-gel comet assay and micronucleus (MN) scoring by flow cytometry. BEAS-2B cells cultured under serum-free conditions were exposed to NM100 (anatase, 50-150 nm), NM101 (anatase, 5-8 nm) and NM103 (rutile, 20-28 nm) for 3, 24 or 48 h mainly at concentrations 1-30 μg/ml. In the mini-gel comet assay (eight gels per slide), we included analysis of (i) DNA strand breaks, (ii) oxidised bases (Fpg-sensitive sites) and (iii) light-induced DNA damage due to photocatalytic activity. Furthermore, MN assays were used and we compared the results of more high-throughput MN scoring with flow cytometry to that of cytokinesis-block MN cytome assay scored manually using a microscope. Various methods were used to assess cytotoxic effects and the results showed in general no or low effects at the doses tested. A weak genotoxic effect of the tested TiO2 materials was observed with an induction of oxidised bases for all three materials of which NM100 was the most potent. When the comet slides were briefly exposed to lab light, a clear induction of DNA strand breaks was observed for the anatase materials, but not for the rutile. This highlights the risk of false positives when testing photocatalytically active materials if light is not properly avoided. A slight increase in MN formation for NM103 was observed in the different MN assays at the lower doses tested (1 and 5 μg/ml). We conclude that mini-gel comet assay and MN scoring using flow cytometry successfully can be used to efficiently study cytotoxic and genotoxic properties of nanoparticles.
  •  
3.
  • Honma, Masamitsu, et al. (författare)
  • Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity : outcomes of the Ames/QSAR International Challenge Project
  • 2019
  • Ingår i: Mutagenesis. - Oxford : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 34:1, s. 3-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.
  •  
4.
  •  
5.
  • Lebedova, Jana, et al. (författare)
  • Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry
  • 2018
  • Ingår i: Mutagenesis. - : OXFORD UNIV PRESS. - 0267-8357 .- 1464-3804. ; 33:1, s. 77-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Metallic nanoparticles (NPs) are promising nanomaterials used in different technological solutions as well as in consumer products. Silver (Ag), gold (Au) and platinum (Pt) represent three metallic NPs with current or suggested use in different applications. Pt is also used as vehicle exhaust catalyst leading to a possible exposure via inhalation. Despite their use, there is limited data on their genotoxic potential and possible size-dependent effects, particularly for Pt NPs. The aim of this study was to explore size-dependent genotoxicity of these NPs (5 and 50 nm) following exposure of human bronchial epithelial cells. We characterised the NPs and assessed the viability (Alamar blue assay), formation of DNA strand breaks (mini-gel comet assay) and induction of micronucleus (MN) analysed using flow cytometry (in vitro microflow kit). The results confirmed the primary size (5 and 50 nm) but showed agglomeration of all NPs in the serum free medium used. Slight reduced cell viability (tested up to 50 mu g/ml) was observed following exposure to the Ag NPs of both particle sizes as well as to the smallest (5 nm) Au NPs. Similarly, at non-cytotoxic concentrations, both 5 and 50 nm-sized Ag NPs, as well as 5 nm-sized Au NPs, increased DNA strand breaks whereas for Pt NPs only the 50 nm size caused a slight increase in DNA damage. No clear induction of MN was observed in any of the doses tested (up to 20 mu g/ml). Taken together, by using the comet assay our study shows DNA strand breaks induced by Ag NPs, without any obvious differences in size, whereas effects from Au and Pt NPs were size-dependent in the sense that the 5 nm-sized Au NPs and 50 nm-sized Pt NPs particles were active. No clear induction of MN was observed for the NPs.
  •  
6.
  •  
7.
  • Norinder, Ulf, 1956-, et al. (författare)
  • Predicting Ames Mutagenicity Using Conformal Prediction in the Ames/QSAR International Challenge Project
  • 2019
  • Ingår i: Mutagenesis. - : Oxford University Press. - 0267-8357 .- 1464-3804. ; 34:1, s. 33-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Valid and predictive models for classifying Ames mutagenicity have been developed using conformal prediction. The models are Random Forest models using signature molecular descriptors. The investigation indicates, on excluding not-strongly mutagenic compounds (class B), that the validity for mutagenic compounds is increased for the predictions based on both public and the Division of Genetics and Mutagenesis, National Institute of Health Sciences of Japan (DGM/NIHS) data while less so when using only the latter data source. The former models only result in valid predictions for the majority, non-mutagenic, class whereas the latter models are valid for both classes, i.e. mutagenic and non-mutagenic compounds. These results demonstrate the importance of data consistency manifested through the superior predictive quality and validity of the models based only on DGM/NIHS generated data compared to a combination of this data with public data sources.
  •  
8.
  • Shakeri Manesh, Sara, et al. (författare)
  • MTH1, an 8-oxo-2'-deoxyguanosine triphosphatase, and MYH, a DNA glycosylase, cooperate to inhibit mutations induced by chronic exposure to oxidative stress of ionising radiation
  • 2017
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 32:3, s. 389-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Our previous results showed that in addition to the immediate interaction of ionising radiation with DNA (direct and indirect effect), low-dose and chronic low-dose rate of irradiation induce endogenous oxidative stress. During oxidative stress, free radicals react with DNA, nucleoside triphosphates (dNTPs), proteins and lipids, and modify their structures. The MYH and MTH1 genes play important roles in preventing mutations induced by 8-hydroxy-guanine, which is an oxidised product of guanine. In this study, we used short-hairpin RNA to permanently knockdown MYH and MTH1 proteins in human lymphoblastoid TK6 cells. Knockdown and wild-type cells were chronically exposed to low dose rates of gamma-radiation (between 1.4 and 30 mGy/h). The cells were also subjected to acute doses delivered at a high-dose rate. Growth rate, extracellular 8-hydroxy-2'-deoxyguanosine, clonogenic cell survival and mutant frequencies were analysed in all cell types. A reduced level of cell growth and survival as well as increased mutant frequencies were observed in cells lacking both MYH and MTH1 proteins as compared to cells lacking only MYH and wild-type cells. To sum up, our results suggest that low-dose rates elevate oxidative stress. MTH1 together with MYH plays an important role in protection against mutations induced by modified dNTPs during chronic oxidative stress. In addition, we found no dose-rate effect at the level of mutations in the wild-type TK6 and MYH-KD cells. Our data interestingly indicate a dose-rate threshold for mutation induction in MTH1/MYH double knockdown cells.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy