SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1066 5099 OR L773:1549 4918 srt2:(2020-2024)"

Sökning: L773:1066 5099 OR L773:1549 4918 > (2020-2024)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mononen, Mimmi, et al. (författare)
  • Trajectory mapping of human embryonic stem cell cardiogenesis reveals lineage branch points and an ISL1 progenitor-derived cardiac fibroblast lineage
  • 2020
  • Ingår i: Stem Cells. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 1066-5099 .- 1549-4918.
  • Tidskriftsartikel (refereegranskat)abstract
    • A family of multipotent heart progenitors plays a central role in the generation of diverse myogenic and nonmyogenic lineages in the heart. Cardiac progenitors in particular play a significant role in lineages involved in disease, and have also emerged to be a strong therapeutic candidate. Based on this premise, we aimed to deeply characterize the progenitor stage of cardiac differentiation at a single-cell resolution. Integrated comparison with an embryonic 5-week human heart transcriptomic dataset validated lineage identities with their late stage in vitro counterparts, highlighting the relevance of an in vitro differentiation for progenitors that are developmentally too early to be accessed in vivo. We utilized trajectory mapping to elucidate progenitor lineage branching points, which are supported by RNA velocity. Nonmyogenic populations, including cardiac fibroblast-like cells and endoderm, were found, and we identified TGFBI as a candidate marker for human cardiac fibroblasts in vivo and in vitro. Both myogenic and nonmyogenic populations express ISL1, and its loss redirected myogenic progenitors into a neural-like fate. Our study provides important insights into processes during early heart development.
  •  
2.
  • Xu, Jiejia, et al. (författare)
  • Genome‐wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors
  • 2020
  • Ingår i: Stem Cells. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 1066-5099 .- 1549-4918.
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two-stage genome-wide CRISPR-knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively. From the screen output, we compiled a list of 15 candidate genes. After validating seven of them, we identified ZIC2 as an essential gene for cardiac progenitor formation. ZIC2 is known as a master regulator of neurogenesis. hPSCs with ZIC2 mutated still express pluripotency markers. However, their ability to differentiate into cardiomyocytes was greatly attenuated. RNA-Seq profiling of the ZIC2-mutant cells revealed that the mutants switched their cell fate alternatively to the noncardiac cell lineage. Further, single cell RNA-seq analysis showed the ZIC2 mutants affected the apelin receptor-related signaling pathway during mesoderm formation. Our results provide a new link between ZIC2 and human cardiogenesis and document the potential power of a genome-wide unbiased CRISPR-knockout screen to identify the key steps in human mesoderm precursor cell- and heart progenitor cell-fate determination during in vitro hPSC cardiogenesis.
  •  
3.
  • Adler, Andrew, et al. (författare)
  • Transsynaptic tracing and its emerging use to assess graftreconstructed neural circuits
  • 2020
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 38:6, s. 716-726
  • Tidskriftsartikel (refereegranskat)abstract
    • Fetal neural progenitor grafts have been evaluated in preclinical animal models of spinal cord injury and Parkinson’s disease for decades, but the initial reliance on primary tissue as a cell source limited the scale of their clinical translatability. With the development of robust methods to differentiate human pluripotent stem cells to specific neural subtypes, cell replacement therapy holds renewed promise to treat a variety of neurodegenerative diseases and injuries at scale. As these cell sources are evaluated in preclinical models, new transsynaptic tracing methods are making it possible to study the connectivity between host and graft neurons with greater speed and detail than was previously possible. To date, these studies have revealed that widespread, long-lasting, and anatomically-appropriate synaptic contacts are established between host and graft neurons, as well as new aspects of host-graft connectivity which may be relevant to clinical cell replacement therapy. It is not yet clear, however, whether the synaptic connectivity between graft and host neurons is as celltype specific as it is in the endogenous nervous system, or whether that connectivity is responsible for the functional efficacy of cell replacement therapy. Here, we review evidence suggesting that the new contacts established between host and graft neuronsmay indeed be cell-type specific, and how transsynaptic tracing can be used inthe future to further elucidate the mechanisms of graft-mediated functional recovery in spinal cord injury and Parkinson’s disease.
  •  
4.
  • Fritze, Jonas, et al. (författare)
  • Loss of Cxcr5 alters neuroblast proliferation and migration in the aged brain
  • 2020
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1066-5099 .- 1549-4918. ; 38:9, s. 1175-1187
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurogenesis, the production of new neurons from neural stem cells, dramatically decreases during aging concomitantly with increased inflammation both systemically and in the brain. However, the precise role of inflammation and whether local or systemic factors drive the neurogenic decline during aging is poorly understood. Here, we identify CXCR5/5/CXCL13 signaling as a novel regulator of neurogenesis in the aged brain. The chemokine Cxcl13 was found to be upregulated in the brain during aging. Loss of its receptor, Cxcr5, led to increased proliferation and decreased numbers of neuroblasts in the aged subventricular zone (SVZ), together with accumulation of neuroblasts in the rostral migratory stream and olfactory bulb (OB), without increasing the amount of new mature neurons in the OB. The effect on proliferation and migration was specific to neuroblasts and likely mediated through increased levels of systemic IL-6 and local Cxcl12 expression in the SVZ. Our study raises the possibility of a new mechanism by which interplay between systemic and local alterations in inflammation regulates neurogenesis during aging.
  •  
5.
  • Kurenkova, A. D., et al. (författare)
  • Notch Signaling Regulates the Chondrogenic Potential of Both Articular Chondrocytes and Their Progenitors During Expansion
  • 2023
  • Ingår i: Stem Cells. - 1066-5099. ; 41:6, s. 658-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage has a limited capacity for self-repair and clinical approaches to cartilage regeneration are needed. The only such approach developed to date involves an expansion of primary autologous chondrocytes in culture, followed by their reimplantation into a cartilage defect. However, because of the formation of fibrocartilage instead of hyaline cartilage, the outcome is often not satisfactory. It happens due to the de-differentiation of chondrocytes during the expansion step. Indeed, articular chondrocytes are non-proliferative and require partial or complete dedifferentiation before actively proliferating. In recent years stem/progenitor cells in articular cartilage (artSPCs) have been described. These cells maintain their own population and renew articular cartilage in sexually mature mice. artSPCs can, theoretically, be superior to chondrocytes, for repairing damaged cartilage. Accordingly, here, we searched for conditions that allow rapid expansion of both artSPCs and chondrocytes with simultaneous preservation of their ability to form hyaline cartilage. Among the modulators of Wnt, Notch, and FGF signaling and of cell adhesion screened, only fibronectin and modulators of the Notch pathway promoted the rapid expansion of artSPCs. Surprisingly, both inhibition and activation of the pathway had this effect. However, only inhibition of Notch during expansion facilitated the chondrogenic potential of both artSPCs and primary chondrocytes, whereas activation of this pathway abrogated this potential entirely. This effect was the same for murine and human cells. Our present observations indicate that Notch signaling is the major regulator of the chondrogenic capacity of both artSPCs and chondrocytes during their expansion.
  •  
6.
  • Marzec-Schmidt, Katarzyna, et al. (författare)
  • Artificial intelligence supports automated characterization of differentiated human pluripotent stem cells
  • 2023
  • Ingår i: Stem Cells. - : Oxford University Press. - 1066-5099 .- 1549-4918. ; 41:9, s. 850-861
  • Tidskriftsartikel (refereegranskat)abstract
    • Revolutionary advances in AI and deep learning in recent years have resulted in an upsurge of papers exploring applications within the biomedical field. Within stem cell research, promising results have been reported from analyses of microscopy images to e.g., distinguish between pluripotent stem cells and differentiated cell types derived from stem cells. In this work, we investigated the possibility of using a deep learning model to predict the differentiation stage of pluripotent stem cells undergoing differentiation towards hepatocytes, based on morphological features of cell cultures. We were able to achieve close to perfect classification of images from early and late time points during differentiation, and this aligned very well with the experimental validation of cell identity and function. Our results suggest that deep learning models can distinguish between different cell morphologies, and provide alternative means of semi-automated functional characterization of stem cell cultures.
  •  
7.
  • Olesen, Kim, et al. (författare)
  • Spatiotemporal extracellular matrix modeling for in situ cell niche studies
  • 2021
  • Ingår i: Stem Cells. - : John Wiley & Sons. - 1066-5099 .- 1549-4918. ; 39:12, s. 1751-1765
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular matrix (ECM) components govern a range of cell functions such as migration, proliferation, maintenance of stemness and differentiation. Cell niches that harbor stem-/progenitor cells, with matching ECM, have been shown in a range of organs, although their presence in the heart is still under debate. Determining niches depends on a range of in vitro and in vivo models and techniques, where animal models are powerful tools for studying cell-ECM dynamics, however, they are costly and time-consuming to use. In vitro models based on recombinant ECM proteins lack the complexity of the in vivo ECM. To address these issues, we present the Spatiotemporal Extracellular Matrix Model (StEMM) for studies of cell-ECM dynamics, such as cell niches. This model combines gentle decellularization and sectioning of cardiac tissue, allowing retention of a complex ECM, with recellularization and subsequent image processing using image stitching, segmentation, automatic binning and generation of cluster maps. We have thereby developed an in situ representation of the cardiac ECM that is useful for assessment of repopulation dynamics and to study the effect of local ECM composition on phenotype preservation of reseeded mesenchymal progenitor cells. This model provides a platform for studies of organ-specific cell-ECM dynamics and identification of potential cell niches. © AlphaMed Press 2021 SIGNIFICANCE STATEMENT: Stem cells reside in adult organs within specific microenvironments called cell niches. The heart is a complex organ and so far, the presence and localization of stem-/progenitor cell niches are subject to constant debate. To address these issues, the authors have developed the Spatiotemporal Extracellular Matrix Model (StEMM), which combines a modified protocol for decellularization, with cryo-sectioning, recellularization, and subsequent image processing including automatic binning and generation of cluster maps. StEMM was developed within a cardiac context and validated using syngeneic mesenchymal progenitor cells. However, this model is not restricted with regard to species or organs.
  •  
8.
  • Pagin, Miriam, et al. (författare)
  • Sox2 controls neural stem cell self-renewal through a Fos-centered gene regulatory network
  • 2021
  • Ingår i: Stem Cells. - : WILEY. - 1066-5099 .- 1549-4918. ; 39:8, s. 1107-1119
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.
  •  
9.
  •  
10.
  • Yoshihara, M, et al. (författare)
  • The Continued Absence of Functional Germline Stem Cells in Adult Ovaries
  • 2023
  • Ingår i: Stem cells (Dayton, Ohio). - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 41:2, s. 105-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Ovaries are central to development, fertility, and reproduction of women. A particularly interesting feature of ovaries is their accelerated aging compared to other tissues, leading to loss of function far before other organs senesce. The limited pool of ovarian follicles is generated before birth and once exhausted, menopause will inevitably commence around the age of 50 years marking the end of fertility. Yet, there are reports suggesting the presence of germline stem cells and neo-oogenesis in adult human ovaries. These observations have fueled a long debate, created experimental fertility treatments, and opened business opportunities. Our recent analysis of cell types in the ovarian cortex of women of fertile age could not find evidence of germline stem cells. Like before, our work has been met with critique suggesting methodological shortcomings. We agree that excellence starts with methods and welcome discussion on the pros and cons of different protocols. In this commentary, we discuss the recent re-interpretation of our work.
  •  
11.
  •  
12.
  •  
13.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy