SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1432 0746 OR L773:0004 6361 srt2:(2015-2019)"

Sökning: L773:1432 0746 OR L773:0004 6361 > (2015-2019)

  • Resultat 1-25 av 1027
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Giesers, B., et al. (författare)
  • A stellar census in globular clusters with MUSE: Binaries in NGC 3201
  • 2019
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 632
  • Tidskriftsartikel (refereegranskat)abstract
    • We utilise multi-epoch MUSE spectroscopy to study binary stars in the core of the Galactic globular cluster NGC 3201. Our sample consists of 3553 stars with 54 883 spectra in total comprising 3200 main-sequence stars up to 4 magnitudes below the turn-off. Each star in our sample has between 3 and 63 (with a median of 14) reliable radial velocity measurements within five years of observations. We introduce a statistical method to determine the probability of a star showing radial velocity variations based on the whole inhomogeneous radial velocity sample. Using HST photometry and an advanced dynamical MOCCA simulation of this specific cluster we overcome observational biases that previous spectroscopic studies had to deal with. This allows us to infer a binary frequency in the MUSE field of view and enables us to deduce the underlying true binary frequency of (6.75 ± 0.72)% in NGC 3201. The comparison of the MUSE observations with the MOCCA simulation suggests a large portion of primordial binaries. We can also confirm a radial increase in the binary fraction towards the cluster centre due to mass segregation. We discovered that in the core of NGC 3201 at least (57.5 ± 7.9)% of blue straggler stars are in a binary system. For the first time in a study of globular clusters, we were able to fit Keplerian orbits to a significant sample of 95 binaries. We present the binary system properties of eleven blue straggler stars and the connection to SX Phoenicis-type stars. We show evidence that two blue straggler formation scenarios, the mass transfer in binary (or triple) star systems and the coalescence due to binary-binary interactions, are present in our data. We also describe the binary and spectroscopic properties of four sub-subgiant (or red straggler) stars. Furthermore, we discovered two new black hole candidates with minimum masses (M sin i) of (7.68 ± 0.50) M⊙, (4.4 ± 2.8) M⊙, and refine the minimum mass estimate on the already published black hole to (4.53 ± 0.21) M⊙. These black holes are consistent with an extensive black hole subsystem hosted by NGC 3201.
  •  
2.
  • Helmi, A., et al. (författare)
  • Gaia Data Release 2 Kinematics of globular clusters and dwarf galaxies around the Milky Way
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616:A12
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds.Methods Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community.Results Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (i v) derive a lower limit for the mass of the Milky Way of 9.1(-2.6)(+6.2) x 10(11) M-circle dot based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (v i) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud.Conclusions All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
  •  
3.
  • Eyer, L., et al. (författare)
  • Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G less than or similar to 21 mag. Aims. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. Methods. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce "motions". To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Results. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. Conclusions. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars.
  •  
4.
  • Abramowski, A., et al. (författare)
  • H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • G349.7+0.2 is a young Galactic supernova remnant (SNR) located at the distance of 11.5 kpc and observed across the entire electromagnetic spectrum from radio to high energy (HE; 0.1 GeV < E < 100 GeV) gamma-rays. Radio and infrared observations indicate that the remnant is interacting with a molecular cloud. In this paper, the detection of very high energy (VHE, E > 100 GeV) gamma-ray emission coincident with this SNR with the High Energy Stereoscopic System (HESS.) is reported. This makes it one of the farthest Galactic SNR ever detected in this domain. An integral flux F(E > 400 GeV) = (6.5 +/- 1.1(stat) +/- 1.3(syst)) x 10-11 ph cm(-2) s(-1) corresponding to similar to 0.7% of that of the Crab Nebula and to a luminosity of similar to 10(34) erg s(-1) above the same energy threshold, and a steep photon index Gamma(VHE) = 2.8 +/- 0.27(stat) +/- 0.20(syst) are measured. The analysis of more than 5 yr of Fermi-LAT data towards this source shows a power-law like spectrum with a best-fit photon index Gamma(HE) = 2.2 +/- 0.04.2(stat-0.31sys)(+0.13), The combined gamma-ray spectrum of 0349.7+0.2 can be described by either a broken power law (I3PL) or a power law with exponential (or sub exponential) cutoff (PLC). In the former case, the photon break energy is found at E-br,E-gamma = 551(-30)(+70) GeV, slightly higher than what is usually observed in the HE/VHE gamma-ray emitting middle-aged SNRs known to be interacting with molecular clouds. In the latter case. the exponential (respectively sub-exponential) cutoff energy is measured at E-cat,E-gamma = 1.4(-0.55)(+1.6) (respectively 0.35(-0.21)(+0.75)) TeV. A pion decay process resulting from the interaction of the accelerated protons and nuclei with the dense surrounding medium is clearly the preferred scenario to explain the gamma-ray emission. The BPL with a spectral steepening of 0.5-1 and the PLC provide equally good fits to the data. The product or the average gas density and the total energy content of accelerated protons and nuclei amounts to nu W-p similar to 5 x 10(51) erg cm(-3)
  •  
5.
  • Ritacco, A., et al. (författare)
  • NIKA 150 GHz polarization observations of the Crab nebula and its spectral energy distribution
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • The Crab nebula is a supernova remnant exhibiting a highly polarized synchrotron radiation at radio and millimetre wavelengths. It is the brightest source in the microwave sky with an extension of 7 by 5 arcmin, and is commonly used as a standard candle for any experiment which aims to measure the polarization of the sky. Though its spectral energy distribution has been well characterized in total intensity, polarization data are still lacking at millimetre wavelengths. We report in this paper high resolution observations (18 00 FWHM) of the Crab nebula in total intensity and linear polarization at 150 GHz with the NIKA camera. NIKA, operated at the IRAM 30 m telescope from 2012 to 2015, is a camera made of Lumped Element Kinetic Inductance Detectors (LEKIDs) observing the sky at 150 and 260 GHz. From these observations we are able to reconstruct the spatial distribution of the polarization degree and angle of the Crab nebula, which is found to be compatible with previous observations at lower and higher frequencies. Averaging across the source and using other existing data sets we find that the Crab nebula polarization angle is consistent with being constant over a wide range of frequencies with a value of -87.7 degrees +/- 0.3 in Galactic coordinates. We also present the first estimation of the Crab nebula spectral energy distribution polarized flux in a wide frequency range: 30-353 GHz. Assuming a single power law emission model we find that the polarization spectral index beta(pol) = -0.347 +/- 0.026 is compatible with the intensity spectral index beta = -0.323 +/- 0.001.
  •  
6.
  • Anguiano, B., et al. (författare)
  • Comprehensive comparison between APOGEE and LAMOST Radial velocities and atmospheric stellar parameters
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the era of massive spectroscopy surveys, automated stellar parameter pipelines and their validation are extremely important for an efficient scientific exploitation of the spectra. Aims. We undertake a critical and comprehensive comparison of the radial velocities and the main stellar atmosphere parameters for stars in common between the latest data releases from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE) and the Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) surveys. Methods. APOGEE is a high-resolution (R = 22500) spectroscopic survey with high signal-to-noise ratio that is part of the Sloan Digital Sky Survey (SDSS). The latest data release, SDSS DR14, comprises APOGEE spectra for 263 444 stars, together with main stellar parameters and individual abundances for up to 20 chemical species. LAMOST is a low-resolution (R = 1800) optical spectroscopic survey also in the Northern Hemisphere, where 4000 fibers can be allocated simultaneously. LAMOST DR3 contains 3 177 995 stars. Results. A total of 42 420 dwarfs and giants stars are in common between the APOGEE DR14 - LAMOST DR3 stellar catalogs. A comparison between APOGEE and LAMOST RVs shows a clear offset of 4.54 +/- 0.03 km s(-1), with a dispersion of 5.8 km s(-1), in the sense that APOGEE radial velocities are higher. We observe a small offset in the effective temperatures of about 13 K, with a scatter of 155 K. A small offset in [Fe/H] of about 0.06 dex together with a scatter of 0.13 dex is also observed. We note that the largest offset between the surveys occurs in the surface gravities. Using only surface gravities in calibrated red giants from APOGEE DR14, with which there are 24 074 stars in common, a deviation of 0.14 dex is found with substantial scatter (0.25 dex). There are 17 482 red giant stars in common between APOGEE DR14 and those in LAMOST tied to APOGEE DR12 via the code called the Cannon. There is generally good agreement between the two data-sets. However, we find that the differences in the stellar parameters depend on effective temperature. For metal-rich stars, a different trend for the [Fe/H] discrepancies is found. Surprisingly, we see no correlation between the internal APOGEE DR14 - DR12 differences in T-eff and those in DR14 - LAMOST tied to DR12, where a correlation should be expected since LAMOST has been calibrated to APOGEE DR12. We find no correlation either between the [Fe/H] discrepancies, suggesting that LAMOST/Cannon is not well coupled to the APOGEE DR12 stellar parameter scale. An [Fe/H] dependence between the stellar parameters in APOGEE DR12 and those in DR14 is reported. We find a weak correlation in the differences between APOGEE DR14 - DR12 and LAMOST on DR12 surface gravity for stars hotter than 4800 K and in the log g range between 2.0 and 2.8 dex. We do not observe an [Fe/H] dependency in the gravity discrepancies.
  •  
7.
  • Atalay, B., et al. (författare)
  • MCDHF and RCI calculations of energy levels, lifetimes, and transition rates in Si III and Si IV
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • We present extensive multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction calculations including 106 states in doubly ionized silicon (Si III) and 45 states in triply ionized silicon (Si IV), which are important for astrophysical determination of plasma properties in different objects. These calculations represents an important extension and improvement of earlier calculations especially for Si III. The calculations are in good agreement with available experiments for excitation energies, transition properties, and lifetimes. Important deviations from the NIST-database for a selection of perturbed Rydberg series are discussed in detail.
  •  
8.
  • Babusiaux, C., et al. (författare)
  • Observational Hertzsprung-Russell diagrams
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 16:A10
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  • Babusiaux, C., et al. (författare)
  • Observational Hertzsprung-Russell diagrams
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented. Aims. We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. Methods. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. Results. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Conclusions. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.
  •  
10.
  • Bachchan, Rajesh Kumar, et al. (författare)
  • Gaia reference frame amid quasar variability and proper motion patterns in the data
  • 2016
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; , s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gaia’s very accurate astrometric measurements will allow the optical realisation of the International Celestial Reference System to be improved by a few orders of magnitude. Several sets of quasars are used to define a kinematically stable non-rotating reference frame with the barycentre of the solar system as its origin. Gaia will also observe a large number of galaxies. Although they are not point-like, it may be possible to determine accurate positions and proper motions for some of their compact bright features. Aims. The optical stability of the quasars is critical, and we investigate how accurately the reference frame can be recovered. Various proper motion patterns are also present in the data, the best known is caused by the acceleration of the solar system barycentre, presumably, towards the Galactic centre. We review some other less well-known effects that are not part of standard astrometric models.Methods. We modelled quasars and galaxies using realistic sky distributions, magnitudes, and redshifts. Position variability was introduced using a Markov chain model. The reference frame was determined using the algorithm developed for the Gaia mission, which also determines the acceleration of the solar system. We also tested a method for measuring the velocity of the solar system barycentre in a cosmological frame.Results. We simulated the recovery of the reference frame and the acceleration of the solar system and conclude that they are not significantly disturbed by quasar variability, which is statistically averaged. However, the effect of a non-uniform sky distribution of the quasars can result in a correlation between the parameters describing the spin components of the reference frame and the acceleration components, which degrades the solution. Our results suggest that an attempt should be made to astrometrically determine the redshift- dependent apparent drift of galaxies that is due to our velocity relative to the cosmic microwave background, which in principle could allow determining the Hubble parameter.
  •  
11.
  • Battistini, Chiara, et al. (författare)
  • The origin and evolution of r - and s -process elements in the Milky Way stellar disk
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 586
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Elements heavier than iron are produced through neutron-capture processes in the different phases of stellar evolution. Asymptotic giant branch (AGB) stars are believed to be mainly responsible for elements that form through the slow neutron-capture process, while the elements created in the rapid neutron-capture process have production sites that are less understood. Knowledge of abundance ratios as functions of metallicity can lead to insight into the origin and evolution of our Galaxy and its stellar populations. Aims. We aim to trace the chemical evolution of the neutron-capture elements Sr, Zr, La, Ce, Nd, Sm, and Eu in the Milky Way stellar disk. This will allow us to constrain the formation sites of these elements, as well as to probe the evolution of the Galactic thin and thick disks. Methods. Using spectra of high resolution (42 000 ≤ R ≤ 65 000) and high signal-to-noise (S/N 200) obtained with the MIKE and the FEROS spectrographs, we determine Sr, Zr, La, Ce, Nd, Sm, and Eu abundances for a sample of 593 F and G dwarf stars in the solar neighborhood. The abundance analysis is based on spectral synthesis using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. Results. We present abundance results for Sr (156 stars), Zr (311 stars), La (242 stars), Ce (365 stars), Nd (395 stars), Sm (280 stars), and Eu (378 stars). We find that Nd, Sm, and Eu show trends similar to what is observed for the α elements in the [X/Fe]-[Fe/H] abundance plane. For [Sr/Fe] and [Zr/Fe], we find decreasing abundance ratios for increasing metallicity, reaching sub-solar values at super-solar metallicities. [La/Fe] and [Ce/Fe] do not show any clear trend with metallicity, and they are close to solar values at all [Fe/H]. The trends of abundance ratios [X/Fe] as a function of stellar ages present different slopes before and after 8 Gyr. Conclusions. The rapid neutron-capture process is active early in the Galaxy, mainly in type-II supernovae from stars in the mass range 8-10 M. Europium is almost completely produced by the r-process, but Nd and Sm show similar trends to Eu even if their s-process component is higher. Strontium and Zr are thought to be mainly produced by the s-process, but show significant enrichment at low metallicity that requires extra r-process production, which probably is different from the classical r-process. Finally, La and Ce are mainly produced via s-process from AGB stars in the mass range 2-4 M, which can be seen by the decrease in [La/Eu] and [Ce/Eu] at [Fe/H] -0.5. The trend of [X/Fe] with age could be explained by considering that the decrease in [X/Fe] for the thick disk stars can be due to the decrease in type-II supernovae with time, meaning a reduced enrichment of r-process elements in the interstellar medium. In the thin disk, the trends are flatter, which is probably due to the main production from the s-process being balanced by Fe production from type-Ia supernovae.
  •  
12.
  • Battistini, Chiara, et al. (författare)
  • The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 577
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Elements heavier than Li are produced in the interiors of stars. However, for many elements the exact production sites and the timescales on which they are dispersed into the interstellar medium are unknown. Having a clear picture on the origins of the elements is important for our ability to trace and understand the formation and chemical evolution of the Milky Way and its stellar populations. Aims. The aim of this study is to investigate the origin and evolution of Sc, V, Mn, and Co for a homogeneous and statistically significant sample of stars probing the different populations of the Milky Way, in particular the thin and thick disks. Methods. Using high-resolution spectra obtained with the MIKE, FEROS, SOFIN, FIES, UVES, and HARPS spectrographs, we determine Sc, V, Mn, and Co abundances for a large sample of F and G dwarfs in the solar neighborhood. The method is based on spectral synthesis and using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. The non-LTE (NLTE) corrections from the literature were applied to Mn and Co. Results. We find that the abundance trends derived for Sc (594 stars), V (466 stars), and Co (567 stars) are very similar to what has been observed for the α-elements in the thin and thick disks. On the contrary, Mn (569 stars) is generally underabundant relative to the Sun (i.e., [Mn/Fe] < 0) for [Fe/H] < 0. In addition, for Mn, when NLTE corrections are applied, the trend changes and is almost flat over the entire metallicity range of the stars in our sample (−2 < [Fe/H] < +0.4). The [Sc/Fe]-[Fe/H] abundance trends show a small separation between the thin and thick disks, while for V and Co they completely overlap. For Mn there is a small difference in [Mn/Fe], but only when NLTE corrections are used. Comparisons with Ti as a reference element show flat trends for all the elements except for Mn that show well separated [Mn/Ti]-[Ti/H] trends for the thin and thick disks. Conclusions. The elements Sc and V present trends compatible with production from type II supernovae (SNII) events. In addition, Sc clearly shows a metallicity dependence for [Fe/H] < −1. Instead, Mn is produced in SNII events for [Fe/H] < −0.4 and then type Ia supernovae start to produce Mn. Finally, Co appears to be produced mainly in SNII with suggestion of enrichment from hypernovae at low metallicities.
  •  
13.
  • Bensby, T., et al. (författare)
  • Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars : VI. Age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed elemental abundance study of 90 F and G dwarf, turn-off, and subgiant stars in the Galactic bulge. Based on high-resolution spectra acquired during gravitational microlensing events, stellar ages and abundances for 11 elements (Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Zn, Y and Ba) have been determined. Four main findings are presented: (1) a wide metallicity distribution with distinct peaks at [Fe/H] = -1.09, -0.63, -0.20, + 0.12, + 0.41; (2) a highfraction of intermediate-age to young stars where at [Fe/H] > 0 more than 35% are younger than 8 Gyr, and for [Fe/H] ≲-0.5 most stars are 10 Gyr or older; (3) several episodes of significant star formation in the bulge has been identified: 3, 6, 8, and 11 Gyr ago; (4) tentatively the "knee" in the α-element abundance trends of the sub-solar metallicity bulge is located at a slightly higher [Fe/H] than in the local thick disk. These findings show that the Galactic bulge has complex age and abundance properties that appear to be tightly connected to the main Galactic stellar populations. In particular, the peaks in the metallicity distribution, the star formation episodes, and the abundance trends, show similarities with the properties of the Galactic thin and thick disks. At the same time, the star formation rate appears to have been slightly faster in the bulge than in the local thick disk, which most likely is an indication of the denser stellar environment closer to the Galactic centre. There are also additional components not seen outside the bulge region, and that most likely can be associated with the Galactic bar. Our results strengthen the observational evidence that support the idea of a secular origin for the Galactic bulge, formed out of the other main Galactic stellar populations present in the central regions of our Galaxy. Additionally, our analysis of this enlarged sample suggests that the (V-I)0 colour of the bulge red clump should be revised to 1.09.
  •  
14.
  • Bensby, Thomas, et al. (författare)
  • Exploring the production and depletion of lithium in the Milky Way stellar disk
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the recent availability of large samples of stars with high-precision Li abundances, there are many unanswered questions about the evolution of this unique element in the Galaxy and in the stars themselves. It is unclear which parameters and physical mechanisms govern Li depletion in late-type stars and if Galactic enrichment has proceeded differently in different stellar populations. With this study we aim to explore these questions further by mapping the evolution of Li with stellar mass, age, and effective temperature for Milky Way disk stars, linking the metal-poor and metal-rich regimes, and how Li differs in the thin and thick disks. We determine Li abundances for a well-studied sample of 714 F and G dwarf, turn-off, and subgiant stars in the solar neighbourhood. The analysis is based on line synthesis of the Li-7 line at 6707 angstrom in high-resolution and high-signal-to-noise ratio echelle spectra, obtained with the MIKE, FEROS, SOFIN, UVES, and FIES spectrographs. The presented Li abundances are corrected for non-LTE effects. Out of the sample of 714 stars, we are able to determine Li abundances for 394 stars and upper limits on the Li abundance for another 121 stars. Out of 36 stars that are listed as exoplanet host stars, 18 have well-determined Li abundances and 6 have Li upper limits. Our main finding is that there are no signatures of Li production in stars associated with the thick disk. Instead the Li abundance trend is decreasing with metallicity for these thick disk stars. Significant Li production is however seen in the thin disk, with a steady increase towards super-solar metallicities. At the highest metallicities, however, around [Fe/H] approximate to +0.3, we tentatively confirm the recent discovery that the Li abundances level out. Our finding contradicts the other recent studies that found that Li is also produced in the thick disk. We find that this is likely due to the alpha-enhancement criteria which those studies used to define their thick disk samples. By using the more robust age criteria, we are able to define a thick disk stellar sample that is much less contaminated by thin disk stars. Furthermore, we also tentatively confirm the age-Li correlation for solar twin stars, and we find that there is no correlation between Li abundance and whether the stars have detected exoplanets or not. The major conclusion that can be drawn from this study is that no significant Li production relative to the primordial abundance took place during the first few billion years of the Milky Way, an era coinciding with the formation and evolution of the thick disk. Significant Li enrichment then took place once long-lived low-mass stars (acting on a timescale longer than SNIa) had had time to contribute to the chemical enrichment of the interstellar medium.
  •  
15.
  • Benz, A. O., et al. (författare)
  • Water in star-forming regions with Herschel (WISH): VI. Constraints on UV and X-ray irradiation from a survey of hydrides in low- to high-mass young stellar objects
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590, s. Art. no. A105-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrides are simple compounds containing one or a few hydrogen atoms bonded to a heavier atom. They are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides such as CH+ and OH+ (and also HCO+), which affect the chemistry of molecules such as water, provide complementary information on irradiation by far-UV (FUV) or X-rays and gas temperature. Aims. We explore hydrides of the most abundant heavier elements in an observational survey covering young stellar objects (YSOs) with different mass and evolutionary state. The focus is on hydrides associated with the dense protostellar envelope and outflows, contrary to previous work that focused on hydrides in diffuse foreground clouds. Methods. Twelve YSOs were observed with HIFI on Herschel in six spectral settings providing fully velocity-resolved line profiles as part of the Water in star-forming regions with Herschel (WISH) program. The YSOs include objects of low (Class 0 and I), intermediate, and high mass, with luminosities ranging from 4 L? to 2 × 105 L?. Results. The targeted lines of CH+, OH+, H2O+, C+, and CH are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. The observed line parameters and correlations suggest two different origins related to gas entrained by the outflows and to the circumstellar envelope. The derived column densities correlate with bolometric luminosity and envelope mass for all molecules, best for CH, CH+, and HCO+. The column density ratios of CH+/OH+ are estimated from chemical slab models, assuming that the H2 density is given by the specific density model of each object at the beam radius. For the low-mass YSOs the observed ratio can be reproduced for an FUV flux of 2-400 times the interstellar radiation field (ISRF) at the location of the molecules. In two high-mass objects, the UV flux is 20-200 times the ISRF derived from absorption lines, and 300-600 ISRF using emission lines. Upper limits for the X-ray luminosity can be derived from H3O+ observations for some low-mass objects. Conclusions. If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 L?, is required. There is no molecular evidence for X-ray induced chemistry in the low-mass objects on the observed scales of a few 1000 AU. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.
  •  
16.
  • Bergemann, Maria, et al. (författare)
  • The Gaia-ESO Survey : Hydrogen lines in red giants directly trace stellar mass
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples: age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the missing link in the chain, since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows determining stellar masses and ages with an accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < T-eff < 5000 K, 0.5 < log g < 3.5, -2.0 < [ Fe/H] < 0.3, and luminosities log L/L-Sun < 2.5. Our analysis provides observational evidence that the H-alpha spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows obtaining simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies such as Andromeda or the Magellanic Clouds even with current instrumentation, such as the VLT and Keck facilities.
  •  
17.
  • Bílek, M., et al. (författare)
  • Imprint of the galactic acceleration scale on globular cluster systems
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • We report that the density profiles of globular cluster (GC) systems in a sample of 17 early-Type galaxies (ETGs) show breaks at the radii where the gravitational acceleration exerted by the stars equals the galactic acceleration scale a0 known from the radial acceleration relation or the modified Newtonian dynamics (MOND). The match with the other characteristic radii in the galaxy is not that close. We propose possible explanations in the frameworks of the Lambda cold dark matter (ΛCDM) model and MOND. We find tentative evidence that in the ΛCDM context, GCs reveal not only the masses of the dark halos through the richness of the GC systems but also the concentrations through the break radii of the GC systems.
  •  
18.
  • Bitsch, Bertram, et al. (författare)
  • Formation of planetary systems by pebble accretion and migration : Growth of gas giants
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Giant planets migrate though the protoplanetary disc as they grow their solid core and attract their gaseous envelope. Previously, we have studied the growth and migration of an isolated planet in an evolving disc. Here, we generalise such models to include the mutual gravitational interaction between a high number of growing planetary bodies. We have investigated how the formation of planetary systems depends on the radial flux of pebbles through the protoplanetary disc and on the planet migration rate. Our N-body simulations confirm previous findings that Jupiter-like planets in orbits outside the water ice line originate from embryos starting out at 20-40 AU when using nominal type-I and type-II migration rates and a pebble flux of approximately 100-200 Earth masses per million years, enough to grow Jupiter within the lifetime of the solar nebula. The planetary embryos placed up to 30 AU migrate into the inner system (r P < 1AU). There they form super-Earths or hot and warm gas giants, producing systems that are inconsistent with the configuration of the solar system, but consistent with some exoplanetary systems. We also explored slower migration rates which allow the formation of gas giants from embryos originating from the 5-10 AU region, which are stranded exterior to 1 AU at the end of the gas-disc phase. These giant planets can also form in discs with lower pebbles fluxes (50-100 Earth masses per Myr). We identify a pebble flux threshold below which migration dominates and moves the planetary core to the inner disc, where the pebble isolation mass is too low for the planet to accrete gas efficiently. In our model, giant planet growth requires a sufficiently high pebble flux to enable growth to out-compete migration. An even higher pebble flux produces systems with multiple gas giants. We show that planetary embryos starting interior to 5 AU do not grow into gas giants, even if migration is slow and the pebble flux is large. These embryos instead grow to just a few Earth masses, the mass regime of super-Earths. This stunted growth is caused by the low pebble isolation mass in the inner disc and is therefore independent of the pebble flux. Additionally, we show that the long-term evolution of our formed planetary systems can naturally produce systems with inner super-Earths and outer gas giants as well as systems of giant planets on very eccentric orbits.
  •  
19.
  • Bitsch, Bertram, et al. (författare)
  • Influence of the water content in protoplanetary discs on planet migration and formation
  • 2016
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature and density profiles of protoplanetary discs depend crucially on the mass fraction of micrometre-sized dust grains and on their chemical composition. A larger abundance of micrometre-sized grains leads to an overall heating of the disc, so that the water ice line moves further away from the star. An increase in the water fraction inside the disc, maintaining a fixed dust abundance, increases the temperature in the icy regions of the disc and lowers the temperature in the inner regions. Discs with a larger silicate fraction have the opposite effect. Here we explore the consequence of the dust composition and abundance for the formation and migration of planets. We find that discs with low water content can only sustain outwards migration for planets up to 4 Earth masses, while outwards migration in discs with a larger water content persists up to 8 Earth masses in the late stages of the disc evolution. Icy planetary cores that do not reach run-away gas accretion can thus migrate to orbits close to the host star if the water abundance is low. Our results imply that hot and warm super-Earths found in exoplanet surveys could have formed beyond the ice line and thus contain a significant fraction in water. These water-rich super-Earths should orbit primarily around stars with a low oxygen abundance, where a low oxygen abundance is caused by either a low water-to-silicate ratio or by overall low metallicity.
  •  
20.
  • Bitsch, Bertram, et al. (författare)
  • Pebble-isolation mass : Scaling law and implications for the formation of super-Earths and gas giants
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of a planetary core by pebble accretion stops at the so-called pebble isolation mass, when the core generates a pressure bump that traps drifting pebbles outside its orbit. The value of the pebble isolation mass is crucial in determining the final planet mass. If the isolation mass is very low, gas accretion is protracted and the planet remains at a few Earth masses with a mainly solid composition. For higher values of the pebble isolation mass, the planet might be able to accrete gas from the protoplanetary disc and grow into a gas giant. Previous works have determined a scaling of the pebble isolation mass with cube of the disc aspect ratio. Here, we expand on previous measurements and explore the dependency of the pebble isolation mass on all relevant parameters of the protoplanetary disc. We use 3D hydrodynamical simulations to measure the pebble isolation mass and derive a simple scaling law that captures the dependence on the local disc structure and the turbulent viscosity parameter α. We find that small pebbles, coupled to the gas, with Stokes number τ f < 0.005 can drift through the partial gap at pebble isolation mass. However, as the planetary mass increases, particles must be decreasingly smaller to penetrate the pressure bump. Turbulent diffusion of particles, however, can lead to an increase of the pebble isolation mass by a factor of two, depending on the strength of the background viscosity and on the pebble size. We finally explore the implications of the new scaling law of the pebble isolation mass on the formation of planetary systems by numerically integrating the growth and migration pathways of planets in evolving protoplanetary discs. Compared to models neglecting the dependence of the pebble isolation mass on the α-viscosity, our models including this effect result in higher core masses for giant planets. These higher core masses are more similar to the core masses of the giant planets in the solar system.
  •  
21.
  • Bitsch, Bertram, et al. (författare)
  • The growth of planets by pebble accretion in evolving protoplanetary discs
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 582
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of planets depends on the underlying protoplanetary disc structure, which in turn influences both the accretion and migration rates of embedded planets. The disc itself evolves on time scales of several Myr, during which both temperature and density profiles change as matter accretes onto the central star. Here we used a detailed model of an evolving disc to determine the growth of planets by pebble accretion and their migration through the disc. Cores that reach their pebble isolation mass accrete gas to finally form giant planets with extensive gas envelopes, while planets that do not reach pebble isolation mass are stranded as ice giants and ice planets containing only minor amounts of gas in their envelopes. Unlike earlier population synthesis models, our model works without any artificial reductions in migration speed and for protoplanetary discs with gas and dust column densities similar to those inferred from observations. We find that in our nominal disc model, the emergence of planetary embryos preferably should occur after approximately 2 Myr in order to not exclusively form gas giants, but also ice giants and smaller planets. The high pebble accretion rates ensure that critical core masses for gas accretion can be reached at all orbital distances. Gas giant planets nevertheless experience significant reduction in semi-major axes by migration. Considering instead planetesimal accretion for planetary growth, we show that formation time scales are too long to compete with the migration time scales and the dissipation time of the protoplanetary disc. All in all, we find that pebble accretion overcomes many of the challenges in the formation of ice and gas giants in evolving protoplanetary discs.
  •  
22.
  • Bitsch, Bertram, et al. (författare)
  • The structure of protoplanetary discs around evolving young stars
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 575
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time scales of several million years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height, and density. The commonly used disc structure of the minimum mass solar nebula (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height, and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, since they can act as sweet spots for forming planetesimals via the streaming instability and affect the direction and magnitude of type-I migration. We present 2D simulations of accretion discs that feature radiative cooling and viscous and stellar heating, and they are linked to the observed evolutionary stages of protoplanetary discs and their host stars. These models allow us to identify preferred planetesimal and planet formation regions in the protoplanetary disc as a function of the disc's metallicity, accretion rate, and lifetime. We derive simple fitting formulae that feature all structural characteristics of protoplanetary discs during the evolution of several Myr. These fits are straightforward for applying to modelling any growth stage of planets where detailed knowledge of the underlying disc structure is required.
  •  
23.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Water around IRAS 15398-3359 observed with ALMA
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595, s. Art no A39-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Understanding how protostars accrete their mass is one of the fundamental problems of star formation. High dust column densities and complex kinematical structures make direct observations challenging. Moreover, direct observations only provide a snapshot. Chemical tracers provide an interesting alternative to characterise the infall histories of protostars. Aims. We aim to map the distribution and kinematics of gaseous water towards the low-mass embedded protostar IRAS 15398-3359. Previous observations of H13CO+ showed a depression in the abundance towards IRAS 15398-3359. This is a sign of destruction of HCO+ by an enhanced presence of gaseous water in an extended region, possibly related to a recent burst in the accretion. Direct observations of water vapour can determine the exact extent of the emission and confirm the hypothesis that HCO+ is indeed a good tracer of the water snow-line. Methods. IRAS 15398-3359 was observed using the Atacama Large Millimeter/submillimeter Array (ALMA) at 0.5? resolution in two setups at 390 and 460 GHz. Maps of HDO (101-000) and were taken simultaneously with observations of the CS (8-7) and N2H+ (5-4) lines and continuum at 0.65 and 0.75 mm. The maps were interpreted using dust radiative transfer calculations of the protostellar infalling envelope with an outflow cavity. Results. HDO is clearly detected and extended over the scales of the H13CO+ depression, although it is displaced by ~500 AU in the direction of the outflow. HO is tentatively detected towards the red-shifted outflow lobe, but otherwise it is absent from the mapped region, which suggests that temperatures are low. Although we cannot entirely exclude a shock origin, this indicates that another process is responsible for the water emission. Conclusions. Based on the temperature structure obtained from dust radiative transfer models, we conclude that the water was most likely released from the grains in an extended hour-glass configuration during a recent accretion burst. HDO is only detected in the region closest to the protostar, at distances of up to 500 AU. These signatures can only be explained if the luminosity has recently been increased by orders of magnitudes. Additionally, the densities in the outflow cones must be sufficiently low.
  •  
24.
  • Blanco-Cuaresma, S., et al. (författare)
  • Testing the chemical tagging technique with open clusters
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 577
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Stars are born together from giant molecular clouds and, if we assume that the priors were chemically homogeneous and well-mixed, we expect them to share the same chemical composition. Most of the stellar aggregates are disrupted while orbiting the Galaxy and most of the dynamic information is lost, thus the only possibility of reconstructing the stellar formation history is to analyze the chemical abundances that we observe today. Aims. The chemical tagging technique aims to recover disrupted stellar clusters based merely on their chemical composition. We evaluate the viability of this technique to recover co-natal stars that are no longer gravitationally bound. Methods. Open clusters are co-natal aggregates that have managed to survive together. We compiled stellar spectra from 31 old and intermediate-age open clusters, homogeneously derived atmospheric parameters, and 17 abundance species, and applied machine learning algorithms to group the stars based on their chemical composition. This approach allows us to evaluate the viability and efficiency of the chemical tagging technique. Results. We found that stars at different evolutionary stages have distinct chemical patterns that may be due to NLTE effects, atomic diffusion, mixing, and biases. When separating stars into dwarfs and giants, we observed that a few open clusters show distinct chemical signatures while the majority show a high degree of overlap. This limits the recovery of co-natal aggregates by applying the chemical tagging technique. Nevertheless, there is room for improvement if more elements are included and models are improved.
  •  
25.
  • Bonomo, A. S., et al. (författare)
  • A deeper view of the CoRoT-9 planetary system A small non-zero eccentricity for CoRoT-9b likely generated by planet-planet scattering
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603, s. A43-
  • Tidskriftsartikel (refereegranskat)abstract
    • CoRoT-9b is one of the rare long-period (P = 95 : 3 days) transiting giant planets with a measured mass known to date. We present a new analysis of the CoRoT-9 system based on five years of radial-velocity (RV) monitoring with HARPS and three new space-based transits observed with CoRoT and Spitzer. Combining our new data with already published measurements we redetermine the CoRoT-9 system parameters and find good agreement with the published values. We uncover a higher significance for the small but non-zero eccentricity of CoRoT-9b (e = 0 : 133(-0.037)(+0.042)) and find no evidence for additional planets in the system. We use simulations of planet-planet scattering to show that the eccentricity of CoRoT-9b may have been generated by an instability in which a similar to 50 M-circle plus planet was ejected from the system. This scattering would not have produced a spin-orbit misalignment, so we predict that the CoRoT-9b orbit should lie within a few degrees of the initial plane of the protoplanetary disk. As a consequence, any significant stellar obliquity would indicate that the disk was primordially tilted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 1027
Typ av publikation
tidskriftsartikel (1015)
forskningsöversikt (12)
Typ av innehåll
refereegranskat (1025)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Janson, Markus (56)
Vlemmings, Wouter, 1 ... (49)
Meyer, M. (45)
Rickman, Hans (45)
Gilmore, G. (45)
Hofmann, W. (44)
visa fler...
Randich, S. (44)
Pancino, E. (43)
Marzari, F. (42)
Bragaglia, A. (42)
Sierks, H. (41)
Desidera, S. (41)
Thomas, N (40)
Barbieri, C. (40)
Vincent, J. -B (40)
Rodrigo, R. (40)
Koschny, D. (40)
Bertaux, J. -L (40)
Bertini, I. (40)
Da Deppo, V. (40)
Fornasier, S. (40)
Groussin, O. (40)
Knollenberg, J. (40)
Lazzarin, M. (40)
Bonnefoy, M. (40)
Tubiana, C. (39)
Cremonese, G. (39)
De Cecco, M. (39)
Fulle, M. (39)
Jorda, L. (39)
Keller, H. U. (39)
Naletto, G. (39)
Oklay, N. (39)
Vallenari, A. (39)
Lagrange, A.-M. (39)
Boccaletti, A. (39)
Barucci, M. A. (38)
Debei, S. (38)
Gutierrez, P. J. (38)
Gratton, R. (38)
Chauvin, G. (38)
Jofré, P. (37)
Mesa, D. (37)
Langlois, M. (37)
Vigan, A. (37)
Sollerman, Jesper (36)
Guettler, C. (36)
Hviid, S. F. (36)
Feldt, M. (36)
Maire, A.-L. (36)
visa färre...
Lärosäte
Stockholms universitet (364)
Chalmers tekniska högskola (291)
Uppsala universitet (238)
Lunds universitet (155)
Kungliga Tekniska Högskolan (73)
Linnéuniversitetet (42)
visa fler...
Luleå tekniska universitet (26)
Malmö universitet (24)
Umeå universitet (14)
Göteborgs universitet (10)
Linköpings universitet (6)
RISE (2)
visa färre...
Språk
Engelska (1027)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1012)
Teknik (48)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy