SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1460 9568 OR L773:0953 816X srt2:(2005-2009)"

Sökning: L773:1460 9568 OR L773:0953 816X > (2005-2009)

  • Resultat 1-25 av 106
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barraud, Perrine, et al. (författare)
  • Isolation and characterization of neural precursor cells from the Sox1-GFP reporter mouse.
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 22:7, s. 1555-1569
  • Tidskriftsartikel (refereegranskat)abstract
    • We have made use of a reporter mouse line in which enhanced green fluorescence protein (GFP) is inserted into the Sox1 locus. We show that the GFP reporter is coexpressed with the Sox1 protein as well as with other known markers for neural stem and progenitor cells, and can be used to identify and isolate these cells by fluorescence-activated cell sorting (FACS) from the developing or adult brain and from neurosphere cultures. All neurosphere-forming cells with the capacity for multipotency and self-renewal reside in the Sox1–GFP-expressing population. Thus, the Sox1–GFP reporter system is highly useful for identification, isolation and characterization of neural stem and progenitor cells, as well as for the validation of alternative means for isolating neural stem and progenitor cells. Further, transplantation experiments show that Sox1–GFP cells isolated from the foetal brain give rise to neurons and glia in vivo, and that many of the neurons display phenotypic characteristics appropriate for the developing brain region from which the Sox1–GFP precursors were derived. On the other hand, Sox1–GFP cells isolated from the adult subventricular zone or expanded neurosphere cultures gave rise almost exclusively to glial cells following transplantation. Thus, not all Sox1–GFP cells possess the same capacity for neuronal differentiation in vivo.
  •  
2.
  • Björkman, Anders, et al. (författare)
  • Rapid cortical reorganisation and improved sensitivity of the hand following cutaneous anaesthesia of the forearm.
  • 2009
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 29:4, s. 837-844
  • Tidskriftsartikel (refereegranskat)abstract
    • The cortical representation of various body parts constantly changes based on the pattern of afferent nerve impulses. As peripheral nerve injury results in a cortical and subcortical reorganisation this has been suggested as one explanation for the poor clinical outcome seen after peripheral nerve repair in humans. Cutaneous anaesthesia of the forearm in healthy subjects and in patients with nerve injuries results in rapid improvement of hand sensitivity. The mechanism behind the improvement is probably based on a rapid cortical and subcortical reorganisation. The aim of this work was to study cortical changes following temporary cutaneous forearm anaesthesia. Ten healthy volunteers participated in the study. Twenty grams of a local anaesthetic cream (EMLA) was applied to the volar aspect of the right forearm. Functional magnetic resonance imaging was performed during sensory stimulation of all fingers of the right hand before and during cutaneous forearm anaesthesia. Sensitivity was also clinically assessed before and during forearm anaesthesia. A group analysis of functional magnetic resonance image data showed that, during anaesthesia, the hand area in the contralateral primary somatosensory cortex expanded cranially over the anaesthetised forearm area. Clinically right hand sensitivity in the volunteers improved during forearm anaesthesia. No significant changes were seen in the left hand. The clinically improved hand sensitivity following forearm anaesthesia is probably based on a rapid expansion of the hand area in the primary somatosensory cortex which presumably results in more nerve cells being made available for the hand in the primary somatosensory cortex.
  •  
3.
  •  
4.
  • Carral, V, et al. (författare)
  • A kind of auditory 'primitive intelligence' already present at birth
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 21:11, s. 3201-3204
  • Tidskriftsartikel (refereegranskat)abstract
    • 'Primitive intelligence' in audition refers to the capacity of the auditory system to adaptatively model the acoustic regularity and react neurophysiologically to violations of such regularity, thus supporting the ability to predict future auditory events. In the present study, event-related brain potentials to pairs of tones were recorded in 11 human newborns to determine the infants' ability to extract an abstract acoustic rule, the direction of a frequency change. Most of the pairs (standard, P = 0.875) were of ascending frequency (i.e. the second tone higher than the first), while the remaining pairs (deviant, P = 0.125) were of descending frequency (the second tone being lower). Their frequencies varied among seven levels to prevent discrimination between standard and deviant pairs on the basis of absolute frequencies. We found that event-related brain potentials to deviant pairs differed in amplitude from those to standard pairs at 50-450 ms from the onset of the second tone of a pair, indicating the infants' ability to represent the abstract rule. This finding suggests the early ontogenetic origin of 'primitive intelligence' in audition that eventually may form a prerequisite for later language acquisition.
  •  
5.
  •  
6.
  • Danilov, Alexandre, et al. (författare)
  • Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis
  • 2006
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 23:2, s. 394-400
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sclerosis is an inflammatory disease of the central nervous system characterized by inflammation, demyelination, axonal degeneration and accumulation of neurological disability. Previously, we demonstrated that stem cells constitute a possible endogenous source for remyelination. We now addressed the question of whether neurogenesis can occur in neuroinflammatory lesions. We demonstrated that, in experimental autoimmune encephalomyelitis, induced in rats 1,1'-dioctadecyl-6,6'-di(4sulphopentyl)-3,3,3',3'tetramethylindocarbocyani n(DiI)-labelled ependymal cells not only proliferated but descendants migrated to the area of neuroinflammation and differentiated into cells expressing the neuronal markers beta-III-tubulin and NeuN. Furthermore, these cells were immunoreactive for bromodeoxyuridine and PCNA, markers for cells undergoing cell proliferation. Using the whole-cell patch-clamp technique on freshly isolated 1, DiI-labelled cells from spinal cord lesions we demonstrated the ability of these cells to fire overshooting action potentials similar to those of immature neurones. We thus provide the first evidence for the initiation of neurogenesis in neuroinflammatory lesions in the adult spinal cord.
  •  
7.
  • Darsalia, Vladimer, et al. (författare)
  • Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum
  • 2007
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 26:3, s. 605-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Stroke is a neurodegenerative disorder and the leading cause of disability in adult humans. Treatments to support efficient recovery in stroke patients are lacking. Several studies have demonstrated the ability of grafted neural stem cells (NSCs) to partly improve impaired neurological functions in stroke-subjected animals. Recently, we reported that NSCs from human fetal striatum and cortex exhibit region-specific differentiation in vitro, but survive, migrate and form neurons to a similar extent after intrastriatal transplantation in newborn rats. Here, we have transplanted the same cells into the stroke-damaged striatum of adult rats. The two types of NSCs exhibited a similar robust survival (30%) at 1 month after transplantation, and migrated throughout the damaged striatum. Striatal NSCs migrated farther and occupied a larger volume of striatum. In the transplantation core, cells were undifferentiated and expressed nestin and, to a lesser extent, also GFAP, beta III-tubulin, DCX and calretinin, markers of immature neural lineage. Immunocytochemistry using markers of proliferation (p-H3 and Ki67) revealed a very low content of proliferating cells (< 1%) in the grafts. Human cells outside the transplantation core differentiated, exhibited mature neuronal morphology and expressed mature neuronal markers such as HuD, calbindin and parvalbumin. Interestingly, striatal NSCs generated a greater number of parvalbumin(+) and calbindin(+) neurons. Virtually none of the grafted cells differentiated into astrocytes or oligodendrocytes. Based on these data, human fetal striatum- and cortex-derived NSCs could be considered potentially safe and viable for transplantation, with strong neurogenic potential, for further exploration in animal models of stroke.
  •  
8.
  • Ericson, Cecilia, et al. (författare)
  • Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides neuroprotection in a rat model of Parkinson's disease.
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 22:11, s. 2755-2764
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrocytes are, as normal constituents of the brain, promising vehicles for ex vivo gene delivery to the central nervous system. In the present study, we have used a lentiviral vector encoding glial cell line-derived neurotrophic factor (GDNF) to transduce rat-derived primary astrocytes, in order to evaluate their potential for long-term transgene expression in vivo and neuroprotection in a rat model of Parkinson's disease. Following transplantation of GDNF-transduced astrocytes to the intact striatum, the level of released GDNF was 2.93 +/- 0.28 ng/mg tissue at 1 week post-grafting, reduced to 0.42 +/- 0.12 ng/mg tissue at 4 weeks, and thereafter was maintained at this level throughout the experiment (12 weeks; 0.53 +/- 0.068 ng/mg tissue). Similarly, grafting to the substantia nigra (SN) resulted in a significant overexpression of GDNF ( approximately 0.20 ng/mg tissue) at 1 week. Intact animals receiving transplants of GDNF-transduced astrocytes displayed an increased contralateral turning (5.39 +/- 1.19 turns/min) in the amphetamine-induced rotation test, which significantly correlated with the GDNF tissue levels measured in the striatum, indicating a stimulatory effect of GDNF on the dopaminergic function. Transplantation of GDNF-transduced astrocytes to the SN 1 week prior to an intrastriatal 6-hydroxydopamine lesion provided a significant protection of nigral tyrosine hydroxylase-positive cells. By contrast, when the cells were transplanted to the striatum, the level of released GDNF was not sufficient to rescue the striatal fibers and, hence, to protect the nigral dopaminergic neurons. Overall, our results suggest that genetically modified astrocytes expressing GDNF can provide neuroprotection in a rat model of Parkinson's disease following transplantation to the SN.
  •  
9.
  • Fountaine, Timothy M., et al. (författare)
  • The effect of alpha-synuclein knockdown on MPP plus toxicity in models of human neurons
  • 2008
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 28:12, s. 2459-2473
  • Tidskriftsartikel (refereegranskat)abstract
    • The protein alpha-synuclein is central to the pathophysiology of Parkinson's disease (PD) but its role in the development of neurodegeneration remains unclear. alpha-Synuclein-knockout mice develop without gross abnormality and are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial inhibitor widely used to model parkinsonism. Here we show that differentiated human dopaminergic neuron-like cells also have increased resistance to 1-methyl-4-phenylpyridine (MPP+), the active metabolite of MPTP, when alpha-synuclein is knocked down using RNA interference. In attempting to understand how this occurred we found that lowering alpha-synuclein levels caused changes to intracellular vesicles, dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2), each of which is known to be an important component of the early events leading to MPP+ toxicity. Knockdown of alpha-synuclein reduced the availability of DAT on the neuronal surface by 50%, decreased the total number of intracellular vesicles by 37% but increased the density of VMAT2 molecules per vesicle by 2.8-fold. However, these changes were not associated with any reduction in MPP+-induced superoxide production, suggesting that alpha-synuclein knockdown may have other downstream effects which are important. We then showed that alpha-synuclein knockdown prevented MPP+-induced activation of nitric oxide synthase (NOS). Activation of NOS is an essential step in MPTP toxicity and increasing evidence points to nitrosative stress as being important in neurodegeneration. Overall, these results show that as well as having a number of effects on cellular events upstream of mitochondrial dysfunction alpha-synuclein affects pathways downstream of superoxide production, possibly involving regulation of NOS activity.
  •  
10.
  • Gram, Dorte X., et al. (författare)
  • Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes
  • 2007
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 25:1, s. 213-223
  • Tidskriftsartikel (refereegranskat)abstract
    • The system that regulates insulin secretion from beta-cells in the islet of Langerhans has a capsaicin-sensitive inhibitory component. As calcitonin gene-related peptide (CGRP)-expressing primary sensory fibers innervate the islets, and a major proportion of the CGRP-containing primary sensory neurons is sensitive to capsaicin, the islet-innervating sensory fibers may represent the capsaicin-sensitive inhibitory component. Here, we examined the expression of the capsaicin receptor, vanilloid type 1 transient receptor potential receptor (TRPV1) in CGRP-expressing fibers in the pancreatic islets, and the effect of selective elimination of capsaicin-sensitive primary afferents on the decline of glucose homeostasis and insulin secretion in Zucker diabetic fatty (ZDF) rats, which are used to study various aspects of human type 2 diabetes mellitus. We found that CGRP-expressing fibers in the pancreatic islets also express TRPV1. Furthermore, we also found that systemic capsaicin application before the development of hyperglycemia prevents the increase of fasting, non-fasting, and mean 24-h plasma glucose levels, and the deterioration of glucose tolerance assessed on the fifth week following the injection. These effects were accompanied by enhanced insulin secretion and a virtually complete loss of CGRP- and TRPV1-coexpressing islet-innervating fibers. These data indicate that CGRP-containing fibers in the islets are capsaicin sensitive, and that elimination of these fibers contributes to the prevention of the deterioration of glucose homeostasis through increased insulin secretion in ZDF rats. Based on these data we propose that the activity of islet-innervating capsaicin-sensitive fibers may have a role in the development of reduced insulin secretion in human type 2 diabetes mellitus.
  •  
11.
  • Hannesson, D K, et al. (författare)
  • Anterior perirhinal cortex kindling produces long-lasting effects on anxiety and object recognition memory
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 21:4, s. 1081-1090
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal lobe epilepsy (TLE) is frequently accompanied by memory impairments and, although their bases are unknown, most research has focused on the hippocampus. The present study investigated the importance of another medial temporal lobe structure, the perirhinal cortex (Prh), in changes in memory in TLE using kindling as a model. Rats were kindled twice daily with anterior Prh stimulation until three fully generalized seizures were evoked. Beginning 7 days later and on successive days, rats were tested in an elevated plus maze, a large circular open field, an open field object exploration task and a delayed-match-to-place task in a water maze in order to assess anxiety-related and exploratory behaviour, object recognition memory and spatial cognition. Kindling increased anxiety-related behaviour in both the elevated plus and open field mazes and disrupted spontaneous object recognition but spared all other behaviours tested. These results are consistent with other findings indicating a greater role for the Prh in object memory and emotional behaviour than in spatial memory and contrast with the selective disruption of spatial memory produced by dorsal hippocampal kindling. The site-selectivity of the behavioural disruptions produced by kindling indicates that such effects are probably mediated by changes particular to the site of seizure initiation rather than to changes in the characteristic circuitry activated by limbic seizure generalization. Further investigation of the behavioural effects of Prh kindling may be useful for studying the mechanisms of mnemonic and affective dysfunction associated with TLE and offer insights into bases for variability in such dysfunction across patients.
  •  
12.
  •  
13.
  • Kushnerenko, Elena, et al. (författare)
  • Processing acoustic change and novelty in newborn infants
  • 2007
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 26:1, s. 265-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Research on event-related potential (ERP) correlates of auditory deviance-detection in newborns provided inconsistent results; temporal and topographic ERP characteristics differed widely across studies and individual infants. Robust and reliable ERP responses were, however, obtained to sounds (termed 'novel' sounds), which cover a wide range of frequencies and widely differ from the context provided by a repeating sound [Kushnerenko et al., (2002) NeuroReport, 13, 1843-1848]. The question we investigated here is whether this effect can be attributed to novelty per se or to acoustic characteristics of the 'novel' sounds, such as their wide frequency spectrum and high signal energy compared with the repeated tones. We also asked how sensitivity to these stimulus aspects changes with development. Twelve newborns and 11 adults were tested in four different oddball conditions, each including a 'standard' sound presented with the probability of 0.8 and two types of infrequent 'deviant' sounds (0.1 probability, each). Deviants were (i) 'novel' sounds (diverse environmental noises); (ii) white-noise segments, or harmonic tones of (iii) a higher pitch, or (iv) higher intensity. In newborns, white-noise deviants elicited the largest response in all latency ranges, whereas in adults, this phenomenon was not found. Thus, newborns appear to be especially sensitive to sounds having a wide frequency spectrum. On the other hand, the pattern of results found for the late discriminative ERP response indicates that newborns may also be able to detect novelty in acoustic stimulation, although with a longer latency than adults, as shown by the ERP response. Results are discussed in terms of developmental refinement of the initially broadly tuned neonate auditory system.
  •  
14.
  • Larsson, Max, et al. (författare)
  • Different basal levels of CaMKII phosphorylated at Thr at nociceptive and low-threshold primary afferent synapses.
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 21:9, s. 2445-2458
  • Tidskriftsartikel (refereegranskat)abstract
    • Postsynaptic autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr286/287 is crucial for the induction of long-term potentiation at many glutamatergic synapses, and has also been implicated in the persistence of synaptic potentiation. However, the availability of CaMKII phosphorylated at Thr286/287 at individual glutamatergic synapses in vivo is unclear. We used post-embedding immunogold labelling to quantitatively analyse the ultrastructural localization of CaMKII phosphorylated at Thr286/287 (pCaMKII) at synapses formed by presumed nociceptive and low-threshold mechanosensitive primary afferent nerve endings in laminae I-IV of rat spinal cord. Immunogold labelling was enriched in the postsynaptic densities of such synapses, consistent with observations in pre-embedding immunoperoxidase-stained dorsal horn. Presynaptic axoplasm also exhibited sparse immunogold labelling, in peptidergic terminals partly associated with dense core vesicles. Analysis of single or serial pCaMKII-immunolabelled sections indicated that the large majority of synapses formed either by presumed peptidergic or non-peptidergic nociceptive primary afferent terminals in laminae I-II of the spinal cord, or by presumed low-threshold mechanosensitive primary afferent terminals in laminae IIi-IV, contained pCaMKII in their postsynaptic density. However, the postsynaptic levels of pCaMKII immunolabelling at low-threshold primary afferent synapses were only approximately 50% of those at nociceptive synapses. These results suggest that constitutively autophosphorylated CaMKII in the postsynaptic density is a common characteristic of glutamatergic synapses, thus potentially contributing to maintenance of synaptic efficacy. Furthermore, pCaMKII appears to be differentially regulated between high- and low-threshold primary afferent synapses, possibly reflecting different susceptibility to synaptic plasticity between these afferent pathways.
  •  
15.
  • Löfgren, Kajsa, et al. (författare)
  • Involvement of glypican-1 autoprocessing in scrapie infection
  • 2008
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 28:5, s. 964-972
  • Tidskriftsartikel (refereegranskat)abstract
    • The copper-binding cellular prion protein (PrPC) and the heparan sulphate (HS)-containing proteoglycan glypican-1 (Gpc-1) can both be attached to lipid rafts via their glycosylphosphatidylinositol anchors, and copper ions stimulate their cointernalization from the cell surface to endosomes. The prion protein controls cointernalization and delivers copper necessary for S-nitrosylation of conserved cysteines in the Gpc-1 core protein. Later, during recycling through endosomal compartments, nitric oxide can be released from the S-nitroso groups and catalyses deaminative degradation and release of the HS substituents. Here, by using confocal immunofluorescence microscopy, we show that normal PrPC and Gpc-1 colocalize inside GT1-1 cells. However, in scrapie-infected cells (ScGT1-1), Gpc-1 protein remained at the cell surface separate from the cellular prion protein. Scrapie infection stimulated Gpc-1 autoprocessing and the generated HS degradation products colocalized with intracellular aggregates of the disease-related scrapie prion protein isoform (PrPSc). Coimmunoprecipitation experiments demonstrated an association between Gpc-1 and PrPC in uninfected cells, and between HS degradation products and PrPSc in infected cells. Silencing of Gpc-1 expression or prevention of Gpc-1 autoprocessing elevated the levels of intracellular PrPSc aggregates in infected cells. These results suggest a role for Gpc-1 autoprocessing in the clearance of PrPSc from infected cells.
  •  
16.
  •  
17.
  •  
18.
  • Roybon, Laurent, et al. (författare)
  • Involvement of Ngn2, Tbr and NeuroD proteins during postnatal olfactory bulb neurogenesis.
  • 2009
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 29:2, s. 232-243
  • Tidskriftsartikel (refereegranskat)abstract
    • Postnatal neurogenesis takes place in two brain regions, the hippocampus and the subventricular zone (SVZ). The transcriptional cascade controlling hippocampal neurogenesis has been described in detail; however, the transcriptional control of olfactory bulb neurogenesis is still not well mapped. In this study, we provide insights into the molecular events controlling postnatal olfactory bulb neurogenesis. We first show the existence of diverse neural stem cell/progenitor populations along the SVZ-rostral migratory stream (RMS) axis, focusing on those expressing the basic helix-loop-helix (bHLH) transcription factor Mash1. We provide evidence that Mash1-derived progenies generate oligodendrocytic and neuronal precursors through the transient expression of the bHLH transcription factors Olig2 and neurogenin2 (Ngn2), respectively. Furthermore, we reveal that Ngn2-positive progenies express the T-box transcription factors Tbr2 and Tbr1, which are usually present during cortical and hippocampal glutamatergic neuronal differentiation. We also highlight a cell population expressing another bHLH transcription factor, neuroD1 (ND1). The ND1-positive cells are located in the SVZ-RMS axis and also co-express Tbr2, Tbr1 and neuroD2. The observations that these cells incorporate bromodeoxyuridine and express both doublecortin and polysialylated form of neural cell adhesion molecule suggest that they are newborn neurons. Finally, using an in vitro assay, we demonstrate that Ngn2 and ND1 equally and exclusively direct differentiation of Mash1-expressing precursors into calbindin-expressing and calretinin-expressing neurons, which are both neuronal subtypes normally found in the olfactory bulb. Taken together, our data illustrate that Ngn2, neuroD and Tbr transcription factors are involved in postnatal neurogenesis in the olfactory bulb.
  •  
19.
  • Ruusuvirta, Timo, et al. (författare)
  • Numerical discrimination in newborn infants as revealed by event-related potentials to tone sequences
  • 2009
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 30:8, s. 1620-1624
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans are able to attentively discriminate number from 6 months of age. However, the age of the emergence of this ability at the pre-attentive stage of processing remains unclear. Event-related potentials (ERPs) were recorded in newborn human infants aged from 3 to 5 days. At 500-ms intervals, the infants were passively exposed to 200-ms sequences of four tones. Each tone could be either 1000 or 1500 Hz in frequency. In most sequences (standards), the ratio of the tones of one frequency to those of the other frequency in a sequence was 2 : 2. In the remaining sequences (deviants, P = 0.1), this ratio was either 3 : 1 or 4 : 0. The mismatch response of ERPs could not be found for 3 : 1 deviants, but it was a robust finding for 4 : 0 deviants, showing the neurophysiological ability of the infants to register the larger deviant-standard difference. The findings suggest very early sensitivity to auditory numerical information in infancy.
  •  
20.
  • Shamloo, Mehrdad, et al. (författare)
  • Npas4, a novel helix-loop-helix PAS domain protein, is regulated in response to cerebral ischemia
  • 2006
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 24:10, s. 2705-2720
  • Tidskriftsartikel (refereegranskat)abstract
    • Basic helix-loop-helix PAS domain proteins form a growing family of transcription factors. These proteins are involved in the process of adaptation to cellular stresses and environmental factors such as a change in oxygen concentration. We describe the identification and characterization of a recently cloned PAS domain protein termed Npas4 in ischemic rat brain. Using gene expression profiling following middle cerebral artery occlusion, we showed that the Npas4 mRNA is differentially expressed in ischemic tissue. The full-length gene was cloned from rat brain and its spatial and temporal expression characterized with in situ hybridization and Northern blotting. The Npas4 mRNA is specifically expressed in the brain and is highly up-regulated in ischemic tissues following both focal and global cerebral ischemic insults. Immunohistochemistry revealed a strong expression in the limbic system and thalamus, as well as in layers 3 and 5 in the cortex of the unchallenged brain. When overexpressed in HEK 293 cells, Npas4 appears as a protein of similar to 100 kDa. In brain samples, however, in addition to the 100 kDa band a specific 200 kDa immunoreactive band was also detected. Ischemic challenge lead to a decrease in the 200 kDa form and a simultaneous increase in the 100 kDa immunoreactivity. This could indicate a novel regulatory mechanism for activation and/or deactivation of this protein in response to ischemic brain injury.
  •  
21.
  •  
22.
  • Thompson, Lachlan, et al. (författare)
  • Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain.
  • 2009
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 30:4, s. 625-638
  • Tidskriftsartikel (refereegranskat)abstract
    • Transplants of fetal dopamine neurons can be used to restore dopamine neurotransmission in animal models of Parkinson's disease, as well as in patients with advanced Parkinson's disease. In these studies the cells are placed in the striatum rather than in the substantia nigra where they normally reside, which may limit their ability to achieve full restoration of motor function. Using a microtransplantation approach, which allows precise placement of small cell deposits directly into the host substantia nigra, and fetal donor cells that express green fluorescent protein under the control of the tyrosine hydroxylase promoter, we show that dopamine neuroblasts implanted into the substantia nigra of adult mice are capable of generating a new nigrostriatal pathway with an outgrowth pattern that matches the anatomy of the intrinsic system. This target-directed regrowth was closely aligned with the intrinsic striatonigral fibre projection and further enhanced by over-expression of glial cell line-derived neurotrophic factor in the striatal target. Results from testing of amphetamine-induced rotational behaviour suggest, moreover, that dopamine neurons implanted into the substantia nigra are also capable of integrating into the host circuitry at the functional level.
  •  
23.
  • Toft Sörensen, Andreas, et al. (författare)
  • Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts.
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 21:10, s. 2793-2799
  • Tidskriftsartikel (refereegranskat)abstract
    • ntrastriatal grafts of fetal ventral mesencephalic tissue, rich in dopaminergic neurons, can reverse symptoms in Parkinson's disease. For development of effective cell replacement therapy, other sources of dopaminergic neurons, e.g. derived from stem cells, are needed. However, the electrophysiological properties grafted cells need to have in order to induce substantial functional recovery are poorly defined. It has not been possible to prospectively identify and record from dopaminergic neurons in fetal transplants. Here we used transgenic mice expressing green fluorescent protein under control of the rat tyrosine hydroxylase promoter for whole-cell patch-clamp recordings of endogenous and grafted dopaminergic neurons. We transplanted ventral mesencephalic tissue from E12.5 transgenic mice into striatum of neonatal rats with or without lesions of the nigrostriatal dopamine system. The transplanted cells exhibited intrinsic electrophysiological properties typical of substantia nigra dopaminergic neurons, i.e. broad action potentials, inward rectifying currents with characteristic 'sag', and spontaneous action potentials. The grafted dopaminergic neurons also received functional excitatory and inhibitory synaptic inputs from the host brain, as shown by the presence of both spontaneous and stimulation-evoked excitatory and inhibitory postsynaptic currents. Occurrence of spontaneous excitatory and inhibitory currents was lower, and of spontaneous action potentials was higher, in neurons placed in the dopamine-depleted striatum than of those in the intact striatum. Our findings define specific electrophysiological characteristics of transplanted fetal dopaminergic neurons, and we provide the first direct evidence of functional synaptic integration of these neurons into host neural circuitries.
  •  
24.
  • Toresson, Håkan, et al. (författare)
  • Dynamic distribution of endoplasmic reticulum in hippocampal neuron dendritic spines
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 22:7, s. 1793-1798
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the endoplasmic reticulum (ER) localized in dendritic spines has become a subject of intense interest because of its potential functions in local protein synthesis and signal transduction. Although it is recognized from electron microscopic studies that not all spines contain ER, little is know of its dynamic regulation or turnover. Here, we report a surprising degree of turnover of ER within spines. Using confocal microscopy imaging we observed continuity of spine-ER with dendritic ER in hippocampal primary neurons. Over 24 h, less than 50% of spine ER was stable. Despite this high degree of turn over, we identified a significant subset of spines that maintained ER for at least 4 days. These results indicate that within a single neuron, the organelle composition of a spine is unexpectedly dynamic and may explain aspects of the spine-to-spine variation in calcium spike magnitude and localized protein synthesis and trafficking.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 106
Typ av publikation
tidskriftsartikel (105)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (102)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Fuxe, K (4)
Blomgren, Klas, 1963 (4)
Kirik, Deniz (4)
Björklund, Anders (3)
Korhonen, Laura (3)
Lindholm, Dan (3)
visa fler...
Fellman, Vineta (3)
Hokfelt, T (3)
Brundin, Patrik (3)
Eriksson, Peter S, 1 ... (3)
Thompson, Lachlan (3)
Svenningsson, P (2)
Rönnbäck, Lars, 1951 (2)
Hansson, Elisabeth, ... (2)
Andersson, J (2)
Ogren, SO (2)
Hagberg, Henrik, 195 ... (2)
Marklund, Niklas (2)
Schneider, H. (2)
Adermark, Louise, 19 ... (2)
Huotilainen, Minna (2)
Lovinger, David M (2)
Kuhn, Hans-Georg, 19 ... (2)
Larsson, Max (2)
Harkany, T (2)
Rivera, A (2)
Lindvall, Olle (2)
Sundler, Frank (2)
Wang, Xiaoyang, 1965 (2)
Zhu, Changlian, 1964 (2)
Bartfai, T (2)
Brown, P. (2)
Wieloch, Tadeusz (2)
El Manira, A (2)
Persson, Mikael, 197 ... (2)
Agnati, L (2)
Spulber, S (2)
Petersén, Åsa (2)
Björkqvist, Maria (2)
Broman, Jonas (2)
Kupsch, A (2)
De la Mora, MP (2)
Crespo-Ramirez, M (2)
Schneider, G-H (2)
Kühn, A A (2)
Winkler, Jürgen (2)
Lara-Garcia, D (2)
Jacobsen, KX (2)
Flores-Gracia, C (2)
Naatanen, Risto (2)
visa färre...
Lärosäte
Karolinska Institutet (48)
Lunds universitet (24)
Göteborgs universitet (18)
Uppsala universitet (10)
Umeå universitet (7)
Linköpings universitet (7)
visa fler...
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Högskolan i Gävle (1)
Handelshögskolan i Stockholm (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (106)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (43)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy