SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1521 0103 OR L773:0022 3565 srt2:(2010-2014)"

Sökning: L773:1521 0103 OR L773:0022 3565 > (2010-2014)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adner, Mikael, et al. (författare)
  • Budesonide Prevents Cytokine-Induced Decrease of the Relaxant Responses to Formoterol and Terbutaline, but Not to Salmeterol, in Mouse Trachea
  • 2010
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 1521-0103 .- 0022-3565. ; 333:1, s. 273-280
  • Tidskriftsartikel (refereegranskat)abstract
    • During asthma exacerbations, increased airway inflammation may impair the effects of beta(2)-adrenoceptor (beta(2)AR) agonists. It is unclear whether this impairment is prevented by inhaled glucocorticoids (GCs). We have investigated the relaxation of carbachol-contracted mouse tracheal segments to the beta(2)AR agonists formoterol, terbutaline, and salmeterol. The segments were pre-exposed for 4 days to the proinflammatory cytokines tumor necrosis factor alpha (100 ng/ml) and interleukin-1 beta (10 ng/ml) with or without the GC, budesonide (1 mu M). Formoterol and terbutaline induced greater maximal relaxation (R-max)than salmeterol. The cytokines decreased R-max of all beta(2)AR agonists, whereas budesonide had no effect. However, after concomitant treatment with cytokines and budesonide, the R-max values of formoterol and terbutaline were not impaired, whereas budesonide did not prevent the decrease in the R-max of salmeterol. A similar pattern was observed for cAMP production by the agonists. In tracheal smooth muscle, beta(2)AR mRNA was not affected by the cytokines but increased with budesonide. However, the cytokines markedly increased cyclooxygenase (COX)-2 mRNA expression, which may lead to heterologous desensitization of beta(2)AR. It is noteworthy that the cytokine-induced increase of COX-2 was blocked by concomitant budesonide suggesting that heterologous desensitization of beta(2)AR by the cytokines may be prevented by budesonide treatment. Budesonide prevented cytokine-induced impairment of the tracheal relaxation and beta(2)AR/cAMP signaling for formoterol but not for salmeterol. This suggests that differences exist between formoterol and salmeterol in beta(2)AR coupling/activation and/or signal transduction upstream of cAMP. These results imply that maximal bronchodilator effects of formoterol, but not of salmeterol, are maintained by budesonide treatment during periods with increased inflammation, such as asthma exacerbations.
  •  
2.
  • Chan, K. Y., et al. (författare)
  • Characterization of the Calcitonin Gene-Related Peptide Receptor Antagonist Telcagepant (MK-0974) in Human Isolated Coronary Arteries
  • 2010
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 1521-0103 .- 0022-3565. ; 334:3, s. 746-752
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensory neuropeptide calcitonin gene-related peptide (CGRP) plays a role in primary headaches, and CGRP receptor antagonists are effective in migraine treatment. CGRP is a potent vasodilator, raising the possibility that antagonism of its receptor could have cardiovascular effects. We therefore investigated the effects of the antimigraine CGRP receptor antagonist telcagepant (MK-0974) [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan- 3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridine-1-yl)piperidine-1-c arboxamide] on human isolated coronary arteries. Arteries with different internal diameters were studied to assess the potential for differential effects across the coronary vascular bed. The concentration-dependent relaxation responses to human alpha CGRP were greater in distal coronary arteries (i.d. 600-1000 mu m; E-max = 83 +/- 7%) than proximal coronary arteries (i.d. 2-3 mm; E-max = 23 +/- 9%), coronary arteries from explanted hearts (i.d. 3-5 mm; E-max = 11 +/- 3%), and coronary arterioles (i.d. 200-300 mu m; E-max = 15 +/- 7%). Telcagepant alone did not induce contraction or relaxation of these coronary blood vessels. Pretreatment with telcagepant (10 nM to 1 mu M) antagonized alpha CGRP-induced relaxation competitively in distal coronary arteries (pA(2) = 8.43 +/- 0.24) and proximal coronary arteries and coronary arterioles (1 mu M telcagepant, giving pK(B) = 7.89 +/- 0.13 and 7.78 +/- 0.16, respectively). alpha CGRP significantly increased cAMP levels in distal, but not proximal, coronary arteries, and this was abolished by pretreatment with telcagepant. Immunohistochemistry revealed the expression and colocalization of the CGRP receptor elements calcitonin-like receptor and receptor activity-modifying protein 1 in the smooth muscle cells in the media layer of human coronary arteries. These findings in vitro support the cardiovascular safety of CGRP receptor antagonists and suggest that telcagepant is unlikely to induce coronary side effects under normal cardiovascular conditions.
  •  
3.
  •  
4.
  •  
5.
  • Kouchek, Milad, et al. (författare)
  • Effects of Intrathecal SNC80, a Delta Receptor Ligand, on Nociceptive Threshold and Dorsal Horn Substance P Release
  • 2013
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0022-3565 .- 1521-0103. ; 347:2, s. 258-264
  • Tidskriftsartikel (refereegranskat)abstract
    • Delta-opioid receptors (DOR) are present in the superficial dorsal horn and are believed to regulate the release of small afferent transmitters as evidenced by the effects of spinally delivered delta-opioid preferring peptides. Here we examined the effects of intrathecal SNC80 [(1)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-(m ethoxybenzyl)-N, N-diethylbenzamide], a selective nonpeptidic DOR agonist, in three preclinical pain models, acute thermal escape, intraplantar carrageenan-tactile allodynia, and intraplantar formalin flinches, and on the evoked release of substance P (SP) from small primary afferents. Rats with chronic intrathecal catheters received intrathecal vehicle or SNC80 (100 or 200 mu g). Intrathecal SNC80 did not change acute thermal latencies or carrageenan-induced thermal hyperalgesia. However, SNC80 attenuated carrageenan-induced tactile allodynia and significantly reduced both phase 1 and phase 2 formalin-induced paw flinches, as assessed by an automatic flinch counting device. These effects were abolished by naltrindole (3 mg/kg i.p.), a selective DOR antagonist, but not CTOP (10 mg i.t.), a selective MOR antagonist. Furthermore, intrathecal SNC80 (200 mg) blocked formalin-induced substance P release otherwise evoked in the ispilateral superficial dorsal horn as measured by NK1 receptor internalization. In conclusion, intrathecal SNC80 alleviated pain hypersensitivity after peripheral inflammation in a fashion paralleling its ability to block peptide transmitter release from small peptidergic afferents, which by its pharmacology appears to represent an effect mediated by a spinal DOR.
  •  
6.
  •  
7.
  • Pejler, Gunnar (författare)
  • Pivotal Role of Mouse Mast Cell Protease 4 in the Conversion and Pressor Properties of Big-Endothelin-1
  • 2013
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0022-3565 .- 1521-0103. ; 346, s. 31-37
  • Tidskriftsartikel (refereegranskat)abstract
    • The serine protease chymase has been reported to generate intracardiac angiotensin-II (Ang-II) from Ang-I as well as an intermediate precursor of endothelin-1 (ET-1), ET-1 (1-31) from Big-ET-1. Although humans possess only one chymase, several murine isoforms are documented, each with its own specific catalytic activity. Among these, mouse mast cell protease 4 (mMCP-4) is the isoform most similar to the human chymase for its activity. The aim of this study was to characterize the capacity of mMCP-4 to convert Big-ET-1 into its bioactive metabolite, ET-1, in vitro and in vivo in the mouse model. Basal mean arterial pressure did not differ between wild-type (WT) and mMCP-4(-/-) mice. Systemic administration of Big-ET-1 triggered pressor responses and increased blood levels of immunoreactive (IR) ET-1 (1-31) and ET-1 that were reduced by more than 50% in mMCP-4 knockout (-/-) mice compared with WT controls. Residual responses to Big-ET-1 in mMCP-4(-/-) mice were insensitive to the enkephalinase/neutral endopeptidase inhibitor thiorphan and the specific chymase inhibitor TY-51469 {2-[4-(5-fluoro-3-methylbenzo[b]thiophen-2-yl)sulfonamido-3-methanesulfonylphenyl]thiazole-4-carboxylic acid}. Soluble fractions from the lungs, left cardiac ventricle, aorta, and kidneys of WT but not mMCP-4(-/-) mice generated ET-1 (1-31) from exogenous Big-ET-1 in a TY-51469-sensitive fashion as detected by high-performance liquid chromatography/matrix-assisted laser desorption/ionization-mass spectrometry. Finally, pulmonary endogenous levels of IR-ET-1 were reduced by more than 40% in tissues derived from mMCP-4(-/-) mice compared with WT mice. Our results show that mMCP-4 plays a pivotal role in the dynamic conversion of systemic Big-ET-1 to ET-1 in the mouse model.
  •  
8.
  • Plan, Elodie L, et al. (författare)
  • Transient Lower Esophageal Sphincter Relaxations PKPD Modeling : Count Model and Repeated Time-To-Event Model
  • 2011
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0022-3565 .- 1521-0103.
  • Tidskriftsartikel (refereegranskat)abstract
    • Transient lower esophageal sphincter relaxation (TLESR) is the major mechanism for gastro-esophageal reflux. Characterization of candidate compounds for reduction of TLESRs are traditionally done through summary exposure and response measures and would benefit from model-based analyses of exposure-TLESR events relationships. PKPD modeling approaches treating TLESR either as count data or as repeated time-to-event (RTTE) data were developed and compared in terms of ability to characterize system and drug characteristics. Vehicle data comprising 294 TLESR events were collected from 9 dogs. Compound (WIN55251-2) data containing 66 TLESR events, as well as plasma concentrations, were obtained from 4 dogs. Each experiment lasted for 45min and was initiated with a meal. Counts in equispaced 5-min intervals and 1-min intervals were modeled based on a Poisson probability distribution model. TLESR events were analyzed with the RTTE model. PK was connected to PD models with a 1-compartment model. Vehicle data were described by a baseline and a surge function; the surge peak was determined around 9.69min by all approaches and its width of 5min (1-min count and RTTE) or 10min (5-min count). TLESRs inhibition by WIN55251-2 was described by an Imax model, with an IC50 of on average 2.39nmol.L-1. Modeling approaches utilizing count or RTTE data linked to a dynamic PKPD representation of exposure is superior to using summary PK and PD measures. Differences in terms of predictions and power to detect a significant drug effect are illustrated with a simulation-based investigation, and a range of diagnostics for such modeling approaches is presented.  
  •  
9.
  •  
10.
  • Sjuvarsson, Elena, et al. (författare)
  • Cellular Influx, Efflux, and Anabolism of 3-Carboranyl Thymidine Analogs: Potential Boron Delivery Agents for Neutron Capture Therapy
  • 2013
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0022-3565 .- 1521-0103. ; 347, s. 388-397
  • Tidskriftsartikel (refereegranskat)abstract
    • 3-[5-{2-(2,3-Dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH) is a first generation 3-carboranyl thymidine analog (3CTA) that has been intensively studied as a boron-10 (B-10) delivery agent for neutron capture therapy (NCT). N5-2OH is an excellent substrate of thymidine kinase 1 and its favorable biodistribution profile in rodents led to successful preclinical NCT of rats bearing intracerebral RG2 glioma. The present study explored cellular influx and efflux mechanisms of N5-2OH, as well as its intracellular anabolism beyond the monophosphate level. N5-2OH entered cultured human CCRF-CEM cells via passive diffusion, whereas the multidrug resistance-associated protein 4 appeared to be a major mediator of N5-2OH monophosphate efflux. N5-2OH was effectively monophosphorylated in cultured murine L929 [thymidine kinase 1 (TK1(+))] cells whereas formation of N5-2OH monophosphate was markedly lower in L929 (TK1(-)) cell variants. Further metabolism to the di- and triphosphate forms was not observed in any of the cell lines. Regardless of monophosphorylation, parental N5-2OH was the major intracellular component in both TK1(+) and TK1(-) cells. Phosphate transfer experiments with enzyme preparations showed that N5-2OH monophosphate, as well as the monophosphate of a second 3-carboranyl thymidine analog [3-[5-(o-carboran-1-yl) pentan-1-yl] thymidine (N5)], were not substrates of thymidine monophosphate kinase. Surprisingly, N5-diphosphate was phosphorylated by nucleoside diphosphate kinase although N5-triphosphate apparently was not a substrate of DNA polymerase. Our results provide valuable information on the cellular metabolism and pharmacokinetic profile of 3-carboranyl thymidine analogs.
  •  
11.
  • Sparve, Erik, et al. (författare)
  • Prediction and Modeling of Effects on the QTc Interval for Clinical Safety Margin Assessment, Based on Single-Ascending-Dose Study Data with AZD3839
  • 2014
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0022-3565 .- 1521-0103. ; 350:2, s. 469-478
  • Tidskriftsartikel (refereegranskat)abstract
    • Corrected QT interval (QTc) prolongation in humans is usually predictable based on results from preclinical findings. This study confirms the signal from preclinical cardiac repolarization models (human ether-a-go-go-related gene, guinea pig monophasic action potential, and dog telemetry) on the clinical effects on the QTc interval. A thorough QT/QTc study is generally required for bioavailable pharmaceutical compounds to determine whether or not a drug shows a QTc effect above a threshold of regulatory interest. However, as demonstrated in this AZD3839 [(S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate] single-ascending-dose (SAD) study, high-resolution digital electrocardiogram data, in combination with adequate efficacy biomarker and pharmacokinetic data and nonlinear mixed effects modeling, can provide the basis to safely explore the margins to allow for robust modeling of clinical effect versus the electrophysiological risk marker. We also conclude that a carefully conducted SAD study may provide reliable data for effective early strategic decision making ahead of the thorough QT/QTc study.
  •  
12.
  •  
13.
  • Wheal, Amanda J., et al. (författare)
  • Cannabidiol Improves Vasorelaxation in Zucker Diabetic Fatty Rats through Cyclooxygenase Activation
  • 2014
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0022-3565 .- 1521-0103. ; 351:2, s. 457-466
  • Tidskriftsartikel (refereegranskat)abstract
    • Cannabidiol (CBD) decreases insulitis, inflammation, neuropathic pain, and myocardial dysfunction in preclinical models of diabetes. We recently showed that CBD also improves vasorelaxation in the Zucker diabetic fatty (ZDF) rat, and the objective of the present study was to establish the mechanisms underlying this effect. Femoral arteries from ZDF rats and ZDF lean controls were isolated, mounted on a myograph, and incubated with CBD (10 mu M) or vehicle for 2 hours. Subsequent vasorelaxant responses were measured in combination with various interventions. Prostaglandin metabolites were detected using enzyme immunoassay. Direct effects of CBD on cyclooxygenase (COX) enzyme activity were measured by oxygraph assay. CBD enhanced the maximum vasorelaxation to acetylcholine (ACh) in femoral arteries from ZDF lean rats (P < 0.01) and especially ZDF rats (P < 0.0001). In ZDF arteries, this enhancement persisted after cannabinoid receptor (CB) type 1, endothelial CB, or peroxisome proliferator-activated receptor-gamma antagonism but was inhibited by CB2 receptor antagonism. CBD also uncovered a vasorelaxant response to a CB2 agonist not previously observed. The CBD-enhanced ACh response was endothelium-, nitric oxide-, and hydrogen peroxide-independent. It was, however, COX-1/2- and superoxide dismutase-dependent, and CBD enhanced the activity of both purified COX-1 and COX-2. The CBD-enhanced ACh response in the arteries was inhibited by a prostanoid EP4 receptor antagonist. Prostaglandin E-2 metabolite levels were below the limits of detection, but 6-keto prostaglandin F-1 alpha was decreased after CBD incubation. These data show that CBD exposure enhances the ability of arteries to relax via enhanced production of vasodilator COX-1/2-derived products acting at EP4 receptors.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy