SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1559 2294 OR L773:1559 2308 srt2:(2015-2019)"

Sökning: L773:1559 2294 OR L773:1559 2308 > (2015-2019)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhoi, Sujata, et al. (författare)
  • Prognostic impact of epigenetic classification in chronic lymphocytic leukemia : The case of subset #2
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:6, s. 449-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on the methylation status of 5 single CpG sites, a novel epigenetic classification of chronic lymphocytic leukemia (CLL) was recently proposed, classifying CLL patients into 3 clinico-biological subgroups with different outcome, termed memory like CLL (m-CLL), naive like CLL (n-CLL), and a third intermediate CLL subgroup (i-CLL). While m-CLL and n-CLL patients at large corresponded to patients carrying mutated and unmutated IGHV genes, respectively, limited information exists regarding the less defined i-CLL group. Using pyrosequencing, we investigated the prognostic impact of the proposed 5 CpG signature in a well-characterized CLL cohort (135 cases), including IGHV-mutated and unmutated patients as well as clinically aggressive stereotyped subset #2 patients. Overall, we confirmed the signature's association with established prognostic markers. Moreover, in the presence of the IGHV mutational status, the epigenetic signature remained independently associated with both time-to-first-treatment and overall survival in multivariate analyses. As a prime finding, we observed that subset #2 patients were predominantly classified as i-CLL, probably reflecting their borderline IGHV mutational status (97-99% germline identity), though having a similarly poor prognosis as n-CLL patients. In summary, we validated the epigenetic classifier as an independent factor in CLL prognostication and provide further evidence that subset #2 is a member of the i-CLL group, hence supporting the existence of a third, intermediate epigenetic subgroup.
  •  
2.
  • Das, Jyotirmoy, et al. (författare)
  • Identification of DNA methylation patterns predisposing for an efficient response to BCG vaccination in healthy BCG-naive subjects
  • 2019
  • Ingår i: Epigenetics. - : TAYLOR & FRANCIS INC. - 1559-2294 .- 1559-2308. ; 14:6, s. 589-601
  • Tidskriftsartikel (refereegranskat)abstract
    • The protection against tuberculosis induced by the Bacille Calmette Guerin (BCG) vaccine is unpredictable. In our previous study, altered DNA methylation pattern in peripheral blood mononuclear cells (PBMCs) in response to BCG was observed in a subgroup of individuals, whose macrophages killed mycobacteria effectively (responders). These macrophages also showed production of Interleukin-1 beta (IL-1 beta) in response to mycobacterial stimuli before vaccination. Here, we hypothesized that the propensity to respond to the BCG vaccine is reflected in the DNA methylome. We mapped the differentially methylated genes (DMGs) in PBMCs isolated from responders/non-responders at the time point before vaccination aiming to identify possible predictors of BCG responsiveness. We identified 43 DMGs and subsequent bioinformatic analyses showed that these were enriched for actin-modulating pathways, predicting differences in phagocytosis. This could be validated by experiments showing that phagocytosis of mycobacteria, which is an event preceding mycobacteria-induced IL-1 beta production, was strongly correlated with the DMG pattern.
  •  
3.
  • Davidsson, Josef, et al. (författare)
  • Methylation and expression analyses of Pallister-Killian syndrome reveal partial dosage compensation of tetrasomy 12p and hypomethylation of gene-poor regions on 12p.
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:3, s. 194-204
  • Tidskriftsartikel (refereegranskat)abstract
    • To ascertain the epigenomic features, i.e., the methylation, non-coding RNA, and gene expression patterns, associated with gain of i(12p) in Pallister-Killian syndrome (PKS), we investigated single cell clones, harboring either disomy 12 or tetrasomy 12p, from a patient with PKS. The i(12p)-positive cells displayed a characteristic expression and methylation signature. Of all the genes on 12p, 13% were overexpressed, including the ATN1, COPS7A, and NECAP1 genes in 12p13.31, a region previously implicated in PKS. However, the median expression fold change (1.3) on 12p was lower than expected by tetrasomy 12p. Thus, partial dosage compensation occurs in cells with i(12p). The majority (89%) of the significantly deregulated genes were not situated on 12p, indicating that global perturbation of gene expression is a key pathogenetic event in PKS. Three genes-ATP6V1G1 in 9q32, GMPS in 3q25.31, and TBX5 in 12q24.21-exhibited concomitant hypermethylation and decreased expression. The i(12p)-positive cells displayed global hypomethylation of gene-poor regions on 12p, a footprint previously associated with constitutional and acquired gains of whole chromosomes as well as with X-chromosome inactivation in females. We hypothesize that this non-genic hypomethylation is associated with chromatin processing that facilitates cellular adaptation to excess genetic material.
  •  
4.
  • Dayeh, Tasnim, et al. (författare)
  • DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:7, s. 482-488
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.
  •  
5.
  • de Mello, Vanessa, et al. (författare)
  • Human liver epigenetic alterations in non-alcoholic steatohepatitis are related to insulin action
  • 2017
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 12:4, s. 287-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Both genetic and lifestyle factors contribute to the risk of non-alcoholic steatohepatitis (NASH). Additionally, epigenetic modifications may also play a key role in the pathogenesis of NASH. We therefore investigated liver DNA methylation, as a marker for epigenetic alterations, in individuals with simple steatosis and NASH, and further tested if these alterations were associated with clinical phenotypes. Liver biopsies obtained from 95 obese individuals (age: 49.5 ± 7.7 years, BMI: 43 ± 5.7 kg/m2, type 2 diabetes [T2D]: 35) as a wedge biopsy during a Roux-en-Y gastric bypass operation were investigated. Thirty-four individuals had a normal liver phenotype, 35 had simple steatosis, and 26 had NASH. Genome-wide DNA methylation pattern was analyzed using the Infinium HumanMethylation450 BeadChip. mRNA expression was analyzed from 42 individuals using the HumanHT-12 Expression BeadChip. We identified 1,292 CpG sites representing 677 unique genes differentially methylated in liver of individuals with NASH (q < 0.001), independently of T2D, age, sex, and BMI. Focusing on the top-ranking 30 and another 37 CpG sites mapped to genes enriched in pathways of metabolism (q = 0.0036) and cancer (q = 0.0001) all together, 59 NASH-associated CpG sites correlated with fasting insulin levels independently of age, fasting glucose, or T2D. From these, we identified 30 correlations between DNA methylation and mRNA expression, for example LDHB (r = −0.45, P = 0.003). We demonstrated that NASH, more than simple steatosis, associates with differential DNA methylation in the human liver. These epigenetic alterations in NASH are linked with insulin metabolism.
  •  
6.
  •  
7.
  • Farkas, Sanja A., 1983-, et al. (författare)
  • Epigenetic changes as prognostic predictors in endometrial carcinomas
  • 2017
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 12:1, s. 19-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Endometrial carcinoma is one of the most frequent gynecological malignancies of the female. The diagnostic and prognostic markers for the high-risk subgroups with unfavorable prognosis are under intense debate worldwide, and, therefore, the aim of this study was to identify new potential DNA methylation markers for the high-risk groups. We used the Illumina Infinium HumanMethylation450 BeadChip to analyze the DNA methylation pattern and investigated its association with clinicopathological features important for defining the high-risk (FIGO-grade 3) and low-risk (FIGO-grade 1) groups of patients with endometrial cancer (n = 31 and n = 39, respectively). We identified specific DNA methylation signature in high-risk endometrial tumors, and potential molecular biomarker genes (TBX2, CHST11, and NID2) associated with unfavorable clinical predictive and prognostic factors.
  •  
8.
  •  
9.
  • Harlid, Sophia, 1978-, et al. (författare)
  • Hormone therapy use and breast tissue DNA methylation : analysis of epigenome wide data from the normal breast study
  • 2019
  • Ingår i: Epigenetics. - : Taylor & Francis. - 1559-2294 .- 1559-2308. ; 14:2, s. 146-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Hormone therapy (HT) is associated with increased risk of breast cancer, strongly dependent on type, duration, and recency of use. HT use could affect cancer risk by changing breast tissue transcriptional programs. We hypothesize that these changes are preceded by changes in DNA methylation. To explore this hypothesis we used histologically normal-appearing breast tissue from the Normal Breast Study (NBS). DNA methylation β-values were obtained using the Illumina HumanMethylation 450 BeadChips for 90 samples including all NBS-participants who used HT within 5 y before surgery. Data were analyzed using the reference-free cell mixture method. Cancer Genome Atlas (TCGA) mRNA-Seq data were used to assess correlation between DNA methylation and gene expression. We identified 527 CpG sites in 403 genes that were associated with ever using HT at genome wide significance (FDR q < 0.05), of these, 68 sites were also significantly associated with duration of use or recency of use. Twelve sites reached significance in all analyses one of which was cg01382688 in ARHGEF4 (p < 1.2x10-7). Mutations in ARHGEF4 have been reported in breast tumors, but this is the first report of possible breast cancer-related DNA methylation changes. In addition, 22 genes included more than one significant CpG site and a majority of these sites were significantly correlated with gene expression. Although based on small numbers, these findings support the hypothesis that HT is associated with epigenetic alterations in breast tissue, and identifies genes with altered DNA methylation states which could be linked to breast cancer development.
  •  
10.
  • Karlsson, Oskar, et al. (författare)
  • Detection of long non-coding RNAs in human breastmilk extracellular vesicles : Implications for early child development.
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:10, s. 721-729
  • Tidskriftsartikel (refereegranskat)abstract
    • Breastmilk has many documented beneficial effects on the developing human infant, but the components of breastmilk that influence these developmental pathways have not been fully elucidated. Increasing evidence suggests that non-coding RNAs encapsulated in extracellular vesicles (EVs) represent an important mechanism of communication between the mother and child. Long non-coding RNAs (lncRNAs) are of particular interest given their key role in gene expression and development. However, it is not known whether breastmilk EVs contain lncRNAs. We used qRT-PCR to determine whether EVs isolated from human breastmilk contain lncRNAs previously reported to be important for developmental processes. We detected 55 of the 87 screened lncRNAs in EVs from the 30 analyzed breastmilk samples, and CRNDE, DANCR GAS5, SRA1 and ZFAS1 were detected in >90% of the samples. GAS5, SNHG8 and ZFAS1 levels were highly correlated (Spearman's rho>0.9; P<0.0001), which may indicate that the loading of these lncRNAs into breastmilk EVs is regulated by the same pathways. The detected lncRNAs are important epigenetic regulators involved in processes such as immune cell regulation and metabolism. They may target a repertoire of recipient cells in offspring and could be essential for child development and health. Further experimental and epidemiological studies are warranted to determine the impact of breastmilk EV-encapsulated lnRNAs in mother to child signaling.
  •  
11.
  • Kopparapu, Pradeep Kumar, et al. (författare)
  • Epigenetic silencing of miR-26A1 in chronic lymphocytic leukemia and mantle cell lymphoma : Impact on EZH2 expression
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:5, s. 335-343
  • Tidskriftsartikel (refereegranskat)abstract
    • Downregulation of miR26A1 has been reported in various B-cell malignancies; however, the mechanism behind its deregulation remains largely unknown. We investigated miR26A1 methylation and expression levels in a well-characterized series of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). From 450K methylation arrays, we first observed miR26A1 (cg26054057) as uniformly hypermethylated in MCL (n = 24) (all >75%), while CLL (n = 18) showed differential methylation between prognostic subgroups. Extended analysis using pyrosequencing confirmed our findings and real-time quantitative PCR verified low miR26A1 expression in both CLL (n = 70) and MCL (n = 38) compared to normal B-cells. Notably, the level of miR26A1 methylation predicted outcome in CLL, with higher levels seen in poor-prognostic, IGHV-unmutated CLL. Since EZH2 was recently reported as a target for miR26A1, we analyzed the expression levels of both miR26A1 and EZH2 in primary CLL samples and observed an inverse correlation. By overexpression of miR26A1 in CLL and MCL cell lines, reduced EZH2 protein levels were observed using both Western blot and flow cytometry. In contrast, methyl-inhibitor treatment led to upregulated miR26A1 expression with a parallel decrease of EZH2 expression. Finally, increased levels of apoptosis were observed in miR26A1-overexpressing cell lines, further underscoring the functional relevance of miR26A1. In summary, we propose that epigenetic silencing of miR26A1 is required for the maintenance of increased levels of EZH2, which in turn translate into a worse outcome, as shown in CLL, highlighting miR26A1 as a tumor suppressor miRNA.
  •  
12.
  • Kopparapu, Pradeep Kumar, et al. (författare)
  • Epigenetic silencing of miR-26A1 in chronic lymphocytic leukemia and mantle cell lymphoma: Impact on EZH2 expression. : Epigenetic inactivation of miR - 26A1 in CLL and MCL
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:5, s. 335-343
  • Tidskriftsartikel (refereegranskat)abstract
    • Downregulation of miR26A1 has been reported in various B-cell malignancies; however, the mechanism behind its deregulation remains largely unknown. We investigated miR26A1 methylation and expression levels in a well-characterized series of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). From 450K methylation arrays, we first observed miR26A1 (cg26054057) as uniformly hypermethylated in MCL (n=24) (all >75%), while CLL (n=18) showed differential methylation between prognostic subgroups. Extended analysis using pyrosequencing confirmed our findings and real-time quantitative PCR verified low miR26A1 expression in both CLL (n=70) and MCL (n=38) compared to normal B-cells. Notably, the level of miR26A1 methylation predicted outcome in CLL, with higher levels seen in poor-prognostic, IGHV-unmutated CLL. Since EZH2 was recently reported as a target for miR26A1, we analyzed the expression levels of both miR26A1 and EZH2 in primary CLL samples and observed an inverse correlation. By overexpression of miR26A1 in CLL and MCL cell lines, reduced EZH2 protein levels were observed using both Western blot and flow cytometry. In contrast, methyl-inhibitor treatment led to upregulated miR26A1 expression with a parallel decrease of EZH2 expression. Finally, increased levels of apoptosis were observed in miR26A1-overexpressing cell lines, further underscoring the functional relevance of miR26A1. In summary, we propose that epigenetic silencing of miR26A1 is required for the maintenance of increased levels of EZH2, which in turn translate into a worse outcome, as shown in CLL, highlighting miR26A1 as a tumor suppressor miRNA.
  •  
13.
  • Kosalai, Subazini Thankaswamy, 1980, et al. (författare)
  • EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia
  • 2019
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 14:11, s. 1125-1140
  • Tidskriftsartikel (refereegranskat)abstract
    • EZH2 is overexpressed in poor-prognostic chronic lymphocytic leukaemia (CLL) cases, acting as an oncogene; however, thus far, the EZH2 target genes in CLL have not been disclosed. In this study, using ChIP-sequencing, we identified EZH2 and H3K27me3 target genes in two prognostic subgroups of CLL with distinct prognosis and outcome, i.e., cases with unmutated (U-CLL, n = 6) or mutated IGHV genes (M-CLL, n = 6). While the majority of oncogenic pathways were equally enriched for EZH2 target genes in both prognostic subgroups, PI3K pathway genes were differentially bound by EZH2 in U-CLL versus M-CLL. The occupancy of EZH2 for selected PI3K pathway target genes was validated in additional CLL samples (n = 16) and CLL cell lines using siRNA-mediated EZH2 downregulation and ChIP assays. Intriguingly, we found that EZH2 directly binds to the IGF1R promoter along with MYC and upregulates IGF1R expression in U-CLL, leading to downstream PI3K activation. By investigating an independent CLL cohort (n = 96), a positive correlation was observed between EZH2 and IGF1R expression with higher levels in U-CLL compared to M-CLL. Accordingly, siRNA-mediated downregulation of either EZH2, MYC or IGF1R and treatment with EZH2 and MYC pharmacological inhibitors in the HG3 CLL cell line induced a significant reduction in PI3K pathway activation. In conclusion, we characterize for the first time EZH2 target genes in CLL revealing a hitherto unknown implication of EZH2 in modulating the PI3K pathway in a non-canonical, PRC2-independent way, with potential therapeutic implications considering that PI3K inhibitors are effective therapeutic agents for CLL.
  •  
14.
  • Magnusson, Mia, 1979, et al. (författare)
  • Rapid and specific hypomethylation of enhancers in endothelial cells during adaptation to cell culturing.
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2308 .- 1559-2294. ; 11:8, s. 614-624
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetics, including DNA methylation, is one way for a cell to respond to the surrounding environment. Traditionally, DNA methylation has been perceived as a quite stable modification; however, lately, there have been reports of a more dynamic CpG methylation that can be affected by, for example, long-term culturing. We recently reported that methylation in the enhancer of the gene encoding the key fibrinolytic enzyme tissue-type plasminogen activator (t-PA) was rapidly erased during cell culturing. In the present study we used sub-culturing of human umbilical vein endothelial cells (HUVECs) as a model of environmental challenge to examine how fast genome-wide methylation changes can arise. To assess genome-wide DNA methylation, the Infinium HumanMethylation450 BeadChip was used on primary, passage 0, and passage 4 HUVECs. Almost 2% of the analyzed sites changed methylation status to passage 4, predominantly displaying hypomethylation. Sites annotated as enhancers were overrepresented among the differentially methylated sites (DMSs). We further showed that half of the corresponding genes concomitantly altered their expression, most of them increasing in expression. Interestingly, the stroke-related gene HDAC9 increased its expression several hundredfold. This study reveals a rapid hypomethylation of CpG sites in enhancer elements during the early stages of cell culturing. As many methods for methylation analysis are biased toward CpG rich promoter regions, we suggest that such methods may not always be appropriate for the study of methylation dynamics. In addition, we found that significant changes in expression arose in genes with enhancer DMSs. HDAC9 displayed the most prominent increase in expression, indicating, for the first time, that dynamic enhancer methylation may be central in regulating this important stroke-associated gene.
  •  
15.
  • Mozgova, Iva, et al. (författare)
  • The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden
  • 2015
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 10, s. 1084-1090
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting.
  •  
16.
  • Myte, Robin, et al. (författare)
  • Circulating levels of inflammatory markers and DNA methylation, an analysis of repeated samples from a population based cohort
  • 2019
  • Ingår i: Epigenetics. - : Taylor & Francis. - 1559-2294 .- 1559-2308. ; 14:7, s. 649-659
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation in blood may adapt to conditions affecting our health, such as inflammation, and multiple studies have identified differential DNA methylation related to smoking, obesity and various diseases. The purpose of this study was to evaluate previously reported, and explore possible new, associations between levels of inflammatory markers and DNA methylation in blood. We used a well-characterized study population consisting of 127 individuals, all of whom were participants in the population-based Vasterbotten Intervention Programme cohort and had provided two blood samples, ten years apart. Levels of CRP and 160 other proteins were measured in plasma, and DNA methylation levels (assessed using the 850K Illumina Infinium MethylationEPIC BeadChip) were measured in white blood cell DNA. Associations between CpG methylation and protein levels were estimated using linear mixed models. In the study we were able to confirm the direction for 85 of 102 previously reported protein-methylation associations. Depicting associations in a network allowed us to identify CpG sites with associations to multiple proteins, and ten CpG sites were each associated with three or more inflammatory markers. Furthermore, two genetic regions included nine additional unreported CpG sites that may represent trans-acting methylation sites. Our study supports a complex interaction between DNA methylation and circulating proteins involved in the inflammatory response. The notion of trans-acting methylation sites affecting, or being affected by, the expression of genes on completely different chromosomes should be taken into account when interpreting results from epigenome-wide association studies.
  •  
17.
  • Olsson, Maja, 1975, et al. (författare)
  • Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:1, s. 74-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform ( ), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development.
  •  
18.
  • Pértille, Fábio, et al. (författare)
  • Mutation dynamics of CpG dinucleotides during a recent event of vertebrate diversification.
  • 2019
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 14:7, s. 685-707
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation in CpGs dinucleotides is associated with high mutability and disappearance of CpG sites during evolution. Although the high mutability of CpGs is thought to be relevant for vertebrate evolution, very little is known on the role of CpG-related mutations in the genomic diversification of vertebrates. Our study analysed genetic differences in chickens, between Red Junglefowl (RJF; the living closest relative to the ancestor of domesticated chickens) and domesticated breeds, to identify genomic dynamics that have occurred during the process of their domestication, focusing particularly on CpG-related mutations. Single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) between RJF and these domesticated breeds were assessed in a reduced fraction of their genome. Additionally, DNA methylation in the same fraction of the genome was measured in the sperm of RJF individuals to identify possible correlations with the mutations found between RJF and the domesticated breeds. Our study shows that although the vast majority of CpG-related mutations found relate to CNVs, CpGs disproportionally associate to SNPs in comparison to CNVs, where they are indeed substantially under-represented. Moreover, CpGs seem to be hotspots of mutations related to speciation. We suggest that, on the one hand, CpG-related mutations in CNV regions would promote genomic 'flexibility' in evolution, i.e., the ability of the genome to expand its functional possibilities; on the other hand, CpG-related mutations in SNPs would relate to genomic 'specificity' in evolution, thus, representing mutations that would associate with phenotypic traits relevant for speciation.
  •  
19.
  • Silva-Martínez, Guillermo A., et al. (författare)
  • Arachidonic and oleic acid exert distinct effects on the DNA methylome
  • 2016
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:5, s. 321-334
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1–200 μM range, respectively, with a maximal differential response at the 100 μM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to β-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts.
  •  
20.
  • Skinner, Michael K, et al. (författare)
  • Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations.
  • 2015
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 10:8, s. 762-771
  • Tidskriftsartikel (refereegranskat)abstract
    • A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific transgenerational sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure, negligible CNV were identified; however, in the transgenerational F3 generation, a significant increase in CNV was observed in the sperm. The genome-wide locations of differential DNA methylation regions (epimutations) and genetic mutations (CNV) were investigated. Observations suggest the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promote genome instability, such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes. The ability of environmental factors to promote epigenetic inheritance that subsequently promotes genetic mutations is a significant advance in our understanding of how the environment impacts disease and evolution.
  •  
21.
  •  
22.
  • Wang, Yunzhang, et al. (författare)
  • Epigenetic influences on aging : a longitudinal genome-wide methylation study in old Swedish twins
  • 2018
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 13:9, s. 975-987
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related changes in DNA methylation were observed in cross-sectional studies, but longitudinal evidence is still limited. Here, we aimed to characterize longitudinal age-related methylation patterns using 1011 blood samples collected from 385 Swedish twins (age at entry: mean 69 and standard deviation 9.7, 73 monozygotic and 96 dizygotic pairs) up to five times (mean 2.6) over 20 years (mean 8.7). We identified 1316 age-associated methylation sites (P<1.3x10(-7)) using a longitudinal epigenome-wide association study design. We measured how estimated cellular compositions changed with age and how much they confounded the age effect. We validated the results in two independent longitudinal cohorts, where 118 CpGs were replicated in Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, 390 samples) (P<3.9x10(-5)), 594 in Lothian Birth Cohort (LBC, 3018 samples) (P<5.1x10(-5)) and 63 in both. Functional annotation of age-associated CpGs showed enrichment in CCCTC-binding factor (CTCF) and other transcription factor binding sites. We further investigated genetic influences on methylation and found no interaction between age and genetic effects in the 1316 age-associated CpGs. Moreover, in the same CpGs, methylation differences within twin pairs increased with 6.4% over 10 years, where monozygotic twins had smaller intra-pair differences than dizygotic twins. In conclusion, we show that age-related methylation changes persist in a longitudinal perspective, and are fairly stable across cohorts. The changes are under genetic influence, although this effect is independent of age. Moreover, methylation variability increase over time, especially in age-associated CpGs, indicating the increase of environmental contributions on DNA methylation with age.
  •  
23.
  •  
24.
  • Zhang, Ruyang, et al. (författare)
  • EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC
  • 2019
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 14:2, s. 118-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia occurs frequently in human cancers and promotes stabilization and activation of hypoxia inducible factor (HIF). HIF-1α is specific for the hypoxia response, and its degradation mediated by three enzymes EGLN1, EGLN2 and EGLN3. Although EGLNs expression has been found to be related to prognosis of many cancers, few studies examined DNA methylation in EGLNs and its relationship to prognosis of early-stage non-small cell lung cancer (NSCLC). We analyzed EGLNs DNA methylation data from tumor tissue samples of 1,230 early-stage NSCLC patients, as well as gene expression data from The Cancer Genome Atlas. The sliding windows sequential forward feature selection method and weighted random forest were used to screen out the candidate CpG probes in lung adenocarcinomas (LUAD) and lung squamous cell carcinomas patients, respectively, in both discovery and validation phases. Then Cox regression was performed to evaluate the association between DNA methylation and overall survival. Among the 34 CpG probes in EGLNs, DNA methylation at cg25923056EGLN2 was identified to be significantly associated with LUAD survival (HR = 1.02, 95% CI: 1.01–1.03, P = 9.90 × 10–5), and correlated with EGLN2 expression (r =–0.36, P = 1.52 × 10–11). Meanwhile, EGLN2 expression was negatively correlated with HIF1A expression in tumor tissues (r =–0.30, P = 4.78 × 10–8) and significantly (P = 0.037) interacted with HIF1A expression on overall survival. Therefore, DNA methylation of EGLN2- HIF1A is a potential marker for LUAD prognosis and these genes are potential treatment targets for further development of HIF-1α inhibitors in lung cancer therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24
Typ av publikation
tidskriftsartikel (23)
annan publikation (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Mansouri, Larry (3)
Rosenquist, Richard (3)
Carén, Helena, 1979 (2)
Nilsson, Emma (2)
Wang, YZ (2)
Sander, Birgitta (2)
visa fler...
Esteller, Manel (2)
Perfilyev, Alexander (2)
Ling, Charlotte (2)
Pospisilova, Sarka (2)
Harlid, Sophia, 1978 ... (2)
Pihlajamäki, Jussi (2)
Beck, S (1)
Lampa, Erik, 1977- (1)
Zedenius, J (1)
Smedby, Karin E. (1)
Wang, S (1)
Pedersen, NL (1)
Wang, N. (1)
Tuomi, Tiinamaija (1)
Groop, Leif (1)
Mansouri, L. (1)
Rosenquist, R. (1)
Juliusson, Gunnar (1)
Johansson, Anna Mari ... (1)
Martinsson, Tommy, 1 ... (1)
Kogner, P (1)
Zhang, Qian (1)
Lind, Lars (1)
Johansson, Bertil (1)
Lindström, Tom (1)
Nilsson, Torbjörn K (1)
Beck, Stephan (1)
Larsson, C (1)
Jern, Sverker, 1954 (1)
Rönn, Tina (1)
Stamatopoulos, K (1)
Baliakas, Panagiotis (1)
van Guelpen, Bethany (1)
Jensen, Per (1)
Karlsson, Anna (1)
Taylor, Jack A. (1)
Troester, Melissa A. (1)
Almqvist, Catarina (1)
Olsson, Maja, 1975 (1)
Almgren, Peter (1)
Vaag, Allan (1)
Pedersen, Nancy L (1)
Papakonstantinou, N (1)
Jansson, Per-Anders (1)
visa färre...
Lärosäte
Karolinska Institutet (10)
Lunds universitet (6)
Uppsala universitet (5)
Göteborgs universitet (4)
Umeå universitet (3)
Linköpings universitet (3)
visa fler...
Sveriges Lantbruksuniversitet (2)
Örebro universitet (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy