SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1660 3397 srt2:(2011-2014)"

Sökning: L773:1660 3397 > (2011-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berntzon, Lotta, et al. (författare)
  • BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp PCC 7120
  • 2013
  • Ingår i: Marine Drugs. - : MDPI AG. - 1660-3397. ; 11:8, s. 3091-3108
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid beta-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms.
  •  
2.
  • Christopeit, Tony, et al. (författare)
  • Efficient Screening of Marine Extracts for Protease Inhibitors by Combining FRET Based Activity Assays and Surface Plasmon Resonance Spectroscopy Based Binding Assays
  • 2013
  • Ingår i: Marine Drugs. - : MDPI AG. - 1660-3397. ; 11:11, s. 4279-4293
  • Tidskriftsartikel (refereegranskat)abstract
    • The screening of extracts from marine organisms is a widely used strategy to discover new drug leads. A common problem in the screening process is the generation of false positive hits through unspecific effects from the complex chemical composition of the crude extracts. In this study, we explored a combination of a fluorescence resonance energy transfer (FRET) based activity assay and a surface plasmon resonance (SPR) based binding assay to avoid this problem. An aqueous extract was prepared from rest raw material of the Norwegian spring spawning herring, and further fractionated by methanol solubility and solid phase extraction. FRET based activity assays were used to determine the influence of each extract on the activity of different proteases. Several extracts showed more than 50% inhibition. The inhibition mechanisms were elucidated by SPR based competition experiments with known inhibitors. For the secreted aspartic proteases 1, 2, 3 and HIV-1 protease, the results indicated that some extracts contain inhibitors interacting specifically with the active site of the enzymes. The study shows that a combination of an activity assay and an SPR based binding assay is a powerful tool to identify potent inhibitors in marine extracts. Furthermore, the study shows that marine vertebrates offer an interesting source for new bioactive compounds, although they have rarely been explored for this purpose.
  •  
3.
  • Huseby, Siv, et al. (författare)
  • Chemical Diversity as a Function of Temperature in Six Northern Diatom Species
  • 2013
  • Ingår i: Marine Drugs. - : MDPI. - 1660-3397. ; 11:11, s. 4232-4245
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigate how metabolic fingerprints are related to temperature. Six common northern temperate diatoms (Attheya longicornis, Chaetoceros socialis, Chaetoceros furcellatus, Porosira glacialis, Skeletonema marinoi, and Thalassiosira gravida) were cultivated at two different temperatures, 0.5 and 8.5 °C. To exclude metabolic variations due to differences in growth rates, the growth rates were kept similar by performing the experiments under light limited conditions but in exponential growth phase. Growth rates and maximum quantum yield of photosynthesis were measured and interpreted as physiological variables, and metabolic fingerprints were acquired by high-resolution mass spectrometry. The chemical diversity varied substantially between the two temperatures for the tested species, ranging from 31% similarity for C. furcellatus and P. glacialis to 81% similarity for A. longicornis. The chemical diversity was generally highest at the lowest temperature.
  •  
4.
  • Ianora, Adrianna, et al. (författare)
  • The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function : An Emerging Field
  • 2011
  • Ingår i: Marine Drugs. - : MDPI. - 1660-3397. ; 9:9, s. 1625-1648
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.
  •  
5.
  • Olofsson, Martin, 1975-, et al. (författare)
  • Combined Effects of Nitrogen Concentration and Seasonal Changes on the Production of Lipids in Nannochloropsis oculata 
  • 2014
  • Ingår i: Marine Drugs. - Basel, Switzerland : MDPI AG. - 1660-3397. ; 12:4, s. 1891-1910
  • Tidskriftsartikel (refereegranskat)abstract
    • Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.
  •  
6.
  • Paul, C., et al. (författare)
  • Diatom Derived Polyunsaturated Aldehydes Do Not Structure the Planktonic Microbial Community in a Mesocosm Study
  • 2012
  • Ingår i: Marine Drugs. - Basel : MDPI AG. - 1660-3397. ; 10:4, s. 775-792
  • Tidskriftsartikel (refereegranskat)abstract
    • Several marine and freshwater diatoms produce polyunsaturated aldehydes (PUA) in wound-activated processes. These metabolites are also released by intact diatom cells during algal blooms. Due to their activity in laboratory experiments, PUA are considered as potential mediators of diatom-bacteria interactions. Here, we tested the hypothesis that PUA mediate such processes in a close-to-field mesocosm experiment. Natural plankton communities enriched with Skeletonema marinoi strains that differ in their PUA production, a plankton control, and a plankton control supplemented with PUA at natural and elevated concentrations were observed. We monitored bacterial and viral abundance as well as bacterial community composition and did not observe any influence of PUA on these parameters even at elevated concentrations. We rather detected an alternation of the bacterial diversity over time and differences between the two S. marinoi strains, indicating unique dynamic bacterial communities in these algal blooms. These results suggest that factors other than PUA are of significance for interactions between diatoms and bacteria.
  •  
7.
  • Strand, Mårten, 1982-, et al. (författare)
  • Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria
  • 2014
  • Ingår i: Marine Drugs. - : MDPI. - 1660-3397. ; 12:2, s. 799-821
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy