SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1673 5374 srt2:(2015-2019)"

Sökning: L773:1673 5374 > (2015-2019)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Mårtensson, Lisa B., et al. (författare)
  • Ca2+ involvement in activation of extracellular-signalregulated- kinase 1/2 and m-calpain after axotomy of the sciatic nerve
  • 2017
  • Ingår i: Neural Regeneration Research. - : Medknow. - 1673-5374. ; 12:4, s. 623-628
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed mechanisms behind regeneration after nerve injury, in particular signal transduction and the fate of Schwann cells (SCs), are poorly understood. Here, we investigated axotomy-induced activation of extracellular- signal-regulated kinase-1/2 (ERK1/2; important for proliferation) and m-calpain in vitro, and the relation to Ca2+ deletion and Schwann cell proliferation and death after rat sciatic nerve axotomy. Nerve segments were cultured for up to 72 hours with and without ethylene glycol-bis(β-aminoethyl ether)- N,N,N’,N’-tetraacetic acid (EGTA). In some experiments, 5-bromo-2′-deoxyuridine (BrdU) was added during the last 24 hours to detect proliferating cells and propidium iodide (PI) was added at the last hour to detect dead and/or dying cells. Immunohistochemistry of sections of the cultured nerve segments was performed to label m-calpain and the phosphorylated and activated form of ERK1/2. The experiments revealed that immunoreactivity for p-ERK1/2 increased with time in organotypically cultured SCs. p-ERK1/2 and m-calpain were also observed in axons. A significant increase in the number of dead or dying SCs was observed in nerve segments cultured for 24 hours. When deprived of Ca2+, activation of axonal m-calpain was reduced, whereas p-ERK1/2 was increased in SCs. Ca2+ deprivation also significantly reduced the number of proliferating SCs, and instead increased the number of dead or dying SCs. Ca2+ seems to play an important role in activation of ERK1/2 in SCs and in SC survival and proliferation. In addition, extracellular Ca2+ levels are also required for m-calpain activation and up-regulation in axons. Thus, regulation of Ca2+ levels is likely to be a useful method to promote SC proliferation.
  •  
3.
  •  
4.
  • Zhang, Mengliang (författare)
  • Two-step production of monoamines in monoenzymatic cells in the spinal cord : A different control strategy of neurotransmitter supply?
  • 2016
  • Ingår i: Neural Regeneration Research. - : Medknow. - 1673-5374. ; 11:12, s. 1904-1909
  • Forskningsöversikt (refereegranskat)abstract
    • Monoamine neurotransmitters play an important role in the modulation of sensory, motor and autonomic functions in the spinal cord. Although traditionally it is believed that in mammalian spinal cord, monoamine neurotransmitters mainly originate from the brain, accumulating evidence indicates that especially when the spinal cord is injured, they can also be produced in the spinal cord. In this review, I will present evidence for a possible pathway for two-step synthesis of dopamine and serotonin in the spinal cord. Published data from different sources and unpublished data from my own ongoing projects indicate that monoenzymatic cells expressing aromatic L-amino acid decarboxylase (AADC), tyrosine hydroxylase (TH) or tryptophan hydroxylase (TPH) are present in the spinal cord and that these TH and THP cells often lie in close proximity to AADC cells. Prompted by the above evidence, I hypothesize that dopamine and serotonin could be synthesized sequentially in two monoenzymatic cells in the spinal cord via a TH-AADC and a TPH-AADC cascade respectively. The monoamines synthesized through this pathway may compensate for lost neurotransmitters following spinal cord injury and also may play specific roles in the recovery of sensory, motor and autonomic functions.
  •  
5.
  • Aufschnaiter, Andreas, et al. (författare)
  • Taking out the garbage : cathepsin D and calcineurin in neurodegeneration
  • 2017
  • Ingår i: Neural Regeneration Research. - : Medknow. - 1673-5374 .- 1876-7958. ; 12:11, s. 1776-1779
  • Forskningsöversikt (refereegranskat)abstract
    • Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to maintain cellular health over decades. Thus, a functional decline of processes contributing to protein degradation such as autophagy and general lysosomal proteolytic capacity is connected to several age-associated neurodegenerative disorders, including Parkinson's, Alzheimer's and Huntington's diseases. These so called proteinopathies are characterized by the accumulation and misfolding of distinct proteins, subsequently driving cellular demise. We recently linked efficient lysosomal protein breakdown via the protease cathepsin D to the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for Parkinson's disease, functional calcineurin was required for proper trafficking of cathepsin D to the lysosome and for recycling of its endosomal sorting receptor to allow further rounds of shuttling. Here, we discuss these findings in relation to present knowledge about the involvement of cathepsin D in proteinopathies in general and a possible connection between this protease, calcineurin signalling and endosomal sorting in particular. As dysregulation of Ca2+ homeostasis as well as lysosomal impairment is connected to a plethora of neurodegenerative disorders, this novel interplay might very well impact pathologies beyond Parkinson's disease.
  •  
6.
  •  
7.
  • Ching, Rosanna C., et al. (författare)
  • The role of exosomes in peripheral nerve regeneration
  • 2015
  • Ingår i: Neural Regeneration Research. - : Medknow. - 1673-5374 .- 1876-7958. ; 10:5, s. 743-747
  • Forskningsöversikt (refereegranskat)abstract
    • Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment) and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Latini, Francesco, 1982-, et al. (författare)
  • Rethinking the standard trans-cortical approaches in the light of superficial white matter anatomy
  • 2015
  • Ingår i: Neural Regeneration Research. - Meadows : Medknow. - 1673-5374 .- 1876-7958. ; 10:12, s. 1906-1909
  • Forskningsöversikt (refereegranskat)abstract
    • A better comprehension of the superficial white matter organization is important in order to minimize potential and avoidable damage to long or intermediate association fibre bundles during every step of a surgical approach. We recently proposed a technique for cadaver specimen preparation, which seems able to identify a more systematic organization of the superficial white matter terminations. Moreover, the use of the physiological intracranial vascular network for the fixation process allowed us to constantly show main vascular landmarks associated with white matter structures. Hence three examples of standard approaches to eloquent areas are herein reanalyzed starting from the first superficial layer. New insights into the possible surgical trajectories and subsequent quantitative damages of both vessels and white matter fibres can help readapt even the most standard and widely accepted approach trough the brain cortex. A more detailed study of these fine anatomical details may become in the near future a fundamental part of the neurosurgical training and the preoperative planning.
  •  
12.
  •  
13.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy