SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1872 9614 OR L773:0969 8051 srt2:(2020-2024)"

Sökning: L773:1872 9614 OR L773:0969 8051 > (2020-2024)

  • Resultat 1-25 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Eriksson, Jonas, et al. (författare)
  • The development of 11C-carbonylation chemistry : A systematic view
  • 2021
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 92, s. 115-137
  • Forskningsöversikt (refereegranskat)abstract
    • The prospects for using carbon-11 labelled compounds in molecular imaging has improved with the development of diverse synthesis methods, including C-11-carbonylations and refined techniques to handle [C-11]carbon monoxide at a nanomole scale. Facilitating biological research and molecular imaging was the driving force when [C-11]carbon monoxide was used in the first in vivo application with carbon-11 in human (1945) and when [C-11]carbon monoxide was used for the first time as a chemical reagent in the synthesis of [C-11]phosgene (1978). This review examines a rich plethora of labelled compounds synthesized from [C-11]carbon monoxide, their chemistry and use in molecular imaging. While the strong development of the C-11-carbonylation chemistry has expanded the carbon-11 domain considerably, it could be argued that the number of C-11-carbonyl compounds entering biological investigations should be higher. The reason for this may partly be the lack of commercially available synthesis instruments designed for C-11-carbonylations. But as this review shows, novel and greatly simplified methods to handle [C-11]carbon monoxide have been developed. The next important challenge is to make full use of these technologies and synthesis methods in PET research. When there is a PET-tracer that meets a more general need, the incentive to implement C-11-carbonylation protocols will increase.
  •  
3.
  • Eriksson, Olof, et al. (författare)
  • News ways of understanding the complex biology of diabetes using PET
  • 2021
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 92, s. 65-71
  • Forskningsöversikt (refereegranskat)abstract
    • The understanding of metabolic disease and diabetes on a molecular level has increased significantly due to the recent advances in molecular biology and biotechnology. However, in vitro studies and animal models do not always translate to the human disease, perhaps illustrated by the failure of many drug candidates in the clinical phase. Non-invasive biomedical imaging techniques such as Positron Emission Tomography (PET) offer tools for direct visualization and quantification of molecular processes in humans. Developments in this area potentially enable longitudinal in vivo studies of receptors and processes involved in diabetes guiding drug development and diagnosis in the near future. This mini-review focuses on describing the overall perspective of how PET can be used to increase our understanding and improve treatment of diabetes. The methodological aspects and future developments and challenges are highlighted.
  •  
4.
  • Estrada, Sergio, et al. (författare)
  • Preclinical evaluation of [C-11]GW457427 as a tracer for neutrophil elastase
  • 2022
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 106-107, s. 62-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Neutrophils are part of the innate immune system and function as a first line of defense against invading microorganisms. Overactivity of the immune system may result in a devastating immuno-inflammation with extensive damage to tissue leading to organ damage and/or failure. The literature suggests several human diseases in which neutrophil elastase (NE) is postulated to be important in the pathophysiology including inflammatory bowel disease (IBD), chronic obstructive pulmonary disorder (COPD), abdominal aortic aneurysms (AAA), breast and lung cancer, and recently also in Sars-cov-2 virus infection (Covid-19). In particular, the lungs are affected by the destructive power of the protease neutrophil elastase (NE). In this paper, we report the pre-clinical development of a selective and specific positron emission tomography (PET) tracer, [C-11] GW457427, as an in vivo biomarker for the study of NE, now available for human studies.Methods: [C-11]GW457427 was produced by methylation of GW447631 using [C-11]methyl triflate and GMP validated production and quality control methods were developed. Chemical purity was high with no traces of the precursor GW611437 or other uv-absorbing compounds. A method for the determination of intact [C-11] GW457427 in plasma was developed and the binding characteristics were evaluated in vitro and in vivo. An animal model for lung inflammation was used to investigate the specificity and sensitivity of the [C-11]GW457427 tracer for neutrophil elastase (NE) in pulmonary inflammation, verified by blockade using two structurally different elastase inhibitors.Results: [C-11]GW457427 was obtained in approximately 45% radiochemical yield and with a radiochemical purity higher than 98%. Molar activity was in the range 130-360 GBq/mu mol. Binding to NE was shown to be highly specific both in vitro and in vivo and a significantly higher uptake of tracer was found in a lipopolysaccharide mouse model of pulmonary inflammation compared with control animals. The uptake in lung tissue measured as standardized uptake value (SUV) strongly correlated with tissue NE content as measured by ELISA. In vitro studies also showed specific tracer binding in aortic tissue of patients with abdominal aorta aneurysm (AAA). The rate of metabolism in rats was appropriate considering the critical balance between available tracer for binding and requirement for blood clearance with about 40% and 20% intact [C-11]GW457427 in plasma at 5 and 40 min, respectively. Radioactivity was cleared from blood and organs in control animals with mainly hepatobiliary excretion with distribution in the intestines and the urinary bladder; but without retention of the tracer in healthy organs of interests such as the lung, liver, kidneys or in the cardiovascular system. A dosimetry study in rat indicated that the whole-body effective dose was 2.2 mu Sv/MBq with bone marrow as the limiting organ. It is estimated that up to five PET-CT investigations could be performed in humans without exceeding a total dose of 10 mSv.Conclusion: [C-11]GW457427 is a promising in vivo PET-biomarker for NE with high specific binding demonstrated both in vitro and in vivo. A GMP validated production method including quality control has been developed and a microdosing toxicity study performed with no adverse signs. [C-11]GW457427 is currently being evaluated in a First-In-Man PET study.
  •  
5.
  •  
6.
  • Khalil, Amina, et al. (författare)
  • Introduction of a fatty acid chain modification to prolong circulatory half-life of a radioligand towards glucose-dependent insulinotropic polypeptide receptor
  • 2024
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 128
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The beneficial role of glucose-dependent insulinotropic polypeptide receptor (GIPR) in weight control and maintaining glucose levels has led to the development of several multi-agonistic peptide drug candidates, targeting GIPR and glucagon like peptide 1 receptor (GLP1R) and/or the glucagon receptor (GCGR). The in vivo quantification of target occupancy by these drugs would accelerate the development of new drug candidates. The aim of this study was to evaluate a novel peptide (GIP1234), based on previously reported ligand DOTA-GIP-C803, modified with a fatty acid moiety to prolong its blood circulation. It would allow higher target tissue exposure and consequently improved peptide uptake as well as in vivo PET imaging and quantification of GIPR occupancy by novel drugs of interest. Method: A 40 amino acid residue peptide (GIP1234) was synthesized based on DOTA-GIP-C803, in turn based on the sequences of endogenous GIP and Exendin-4 with specific amino acid modifications to obtain GIPR selectivity. A palmitoyl fatty acid chain was furthermore added at Lys14 via a glutamic acid linker to prolong its blood circulation time by the interaction with albumin. GIP1234 was conjugated with a DOTA chelator at the C -terminal cysteine residue to achieve 68Ga radiolabeling. The resulting PET probe, [68Ga]Ga-DOTA-GIP1234 was evaluated for receptor binding specificity and selectivity using HEK293 cells transfected with human GIPR, GLP1R, or GCGR. Blocking experiments with tirzepatide (2 mu M) were conducted using huGIPR HEK293 cells to investigate binding specificity. Ex vivo and in vivo organ distribution of [68Ga]Ga-DOTA-GIP1234 was studied in rats and a pig in comparison to [68Ga]Ga-DOTA-C803-GIP. Binding of [68Ga]Ga-DOTA-GIP1234 to albumin was assessed in situ using polyacrylamide gel electrophoresis (PAGE). The stability was tested in formulation buffer and rat blood plasma. Results: [68Ga]Ga-DOTA-GIP1234 was synthesized with non-decay corrected radiochemical yield of 88 +/- 3.7 % and radiochemical purity of 97.8 +/- 0.8 %. The molar activity for the radiotracer was 8.1 +/- 1.1 MBq/nmol. [68Ga]Ga-DOTA-GIP1234 was stable and maintained affinity to huGIPR HEK293 cells (dissociation constant (Kd) = 40 +/- 12.5 nM). The binding of [68Ga]Ga-DOTA-GIP1234 to huGCGR and huGLP1R cells was insignificant. Preincubation of huGIPR HEK293 cell sections with tirzepatide resulted in the decrease of [68Ga]Ga-DOTA-GIP1234 binding by close to 90 %. [68Ga]Ga-DOTA-GIP1234 displayed slow blood clearance in pigs with SUV = 3.5 after 60 min. Blood retention of the tracer in rat was 2-fold higher than that of [68Ga]Ga-DOTA-C803-GIP. [68Ga]Ga- DOTA-GIP1234 also demonstrated strong liver uptake in both pig and rat combined with decreased renal excretion. The concentration dependent binding of [68Ga]Ga-DOTA-GIP1234 to albumin was confirmed in situ by PAGE. Conclusion: [68Ga]Ga-DOTA-GIP1234 demonstrated nanomolar affinity and selectivity for huGIPR in vitro. Addition of a fatty acid moiety prolonged blood circulation time and tissue exposure in both rat and pig in vivo. However, the liver uptake was also increased which may make PET imaging of abdominal tissues such as pancreas challenging. The investigation of the influence of fatty acid moiety on the biological performance of the peptide ligand paved the way for further rational design of GIPR ligand analogues with improved characteristics.
  •  
7.
  • Meier, Silvio R., et al. (författare)
  • Passive and receptor mediated brain delivery of an anti-GFAP nanobody
  • 2022
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 114-115, s. 128-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Antibody-based constructs, engineered to enter the brain using transferrin receptor (TfR) mediated transcytosis, have been successfully used as PET radioligands for imaging of amyloid-beta (Aβ) in preclinical studies. However, these radioligands have been large and associated with long circulation times, i.e. non-optimal properties for neuroPET radioligands. The aim of this study was to investigate the in vivo brain delivery of the radiolabeled nanobody VHH-E9 that binds to glial fibrillary acidic protein (GFAP) expressed by reactive astrocytes, without and with fusion to a TfR binding moiety, as potential tools to detect neuroinflammation.Methods: Three protein constructs were recombinantly expressed: 1) The GFAP specific nanobody VHH-E9, 2) VHH-E9 fused to a single chain variable fragment of the TfR binding antibody 8D3 (scFv8D3) and 3) scFv8D3 alone. Brain delivery of the constructs was investigated at 2 h post injection. Binding to GFAP was studied with autoradiography while in vivo brain retention of [125I]VHH-E9 and [125I]VHH-E9-scFv8D3 was further investigated at 8 h, 24 h and 48 h in wild-type (WT), and at the same time points in transgenic mice (ArcSwe) that in addition to Aβ pathology also display neuroinflammation.Results: At 2 h after administration, [125I]VHH-E9-scFv8D3 and [125I]scFv8D3 displayed 3-fold higher brain concentrations than [125I]VHH-E9. In vitro autoradiography showed distinct binding of both [125I]VHH-E9-scFv8D3 and [125I]VHH-E9 to regions with abundant GFAP in ArcSwe mice. However, in vivo, there was no difference in brain concentrations between WT and ArcSwe at any of the studied time points.Conclusions: Fused to scFv8D3, VHH-E9 displayed increased brain delivery. When radiolabeled and applied on brain sections, the bispecific construct was able to discriminate between WT and ArcSwe mice, but in vivo brain uptake and retention over time did not differ between WT and ArcSwe mice.
  •  
8.
  •  
9.
  • Oroujeni, Maryam, PhD, 1982-, et al. (författare)
  • Evaluation of affinity matured Affibody molecules for imaging of the immune checkpoint protein B7-H3
  • 2023
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 124-125
  • Tidskriftsartikel (refereegranskat)abstract
    • B7-H3 (CD276), an immune checkpoint protein, is a promising molecular target for immune therapy of malignant tumours. Sufficient B7-H3 expression level is a precondition for successful therapy. Radionuclide molecular imaging is a powerful technique for visualization of expression levels of molecular targets in vivo. Use of small radiolabelled targeting proteins would enable high-contrast radionuclide imaging of molecular targets if adequate binding affinity and specificity of an imaging probe could be provided. Affibody molecules, small engineered affinity proteins based on a non-immunoglobulin scaffold, have demonstrated an appreciable potential in radionuclide imaging. Proof-of principle of radionuclide visualization of expression levels of B7-H3 in vivo was demonstrated using the [99mTc]Tc-AC12-GGGC Affibody molecule. We performed an affinity maturation of AC12, enabling selection of clones with higher affinity. Three most promising clones were expressed with a -GGGC (triglycine-cysteine) chelating sequence at the C-terminus and labelled with technetium-99m (99mTc). 99mTc-labelled conjugates bound to B7-H3-expressing cells specifically in vitro and in vivo. Biodistribution in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrated improved imaging properties of the new conjugates compared with the parental variant [99mTc]Tc-AC12-GGGC. [99mTc]Tc-SYNT-179 provided the strongest improvement of tumour-to-organ ratios. Thus, affinity maturation of B7-H3 Affibody molecules could improve biodistribution and targeting properties for imaging of B7-H3-expressing tumours.
  •  
10.
  •  
11.
  • Rosestedt, Maria, et al. (författare)
  • Radiolabelling and positron emission tomography imaging of a high-affinity peptide binder to collagen type 1
  • 2021
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 93, s. 54-62
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionPathological formation of fibrosis, is an important feature in many diseases. Fibrosis in liver and pancreas has been associated to metabolic disease including type 1 and 2 diabetes. The current methods for detecting and diagnosing fibrosis are either invasive, or their sensitivity to detect fibrosis in early stage is limited. Therefore, it is crucial to develop non-invasive methods to detect, stage and study the molecular processes that drive the pathology of liver fibrosis. The peptide LRELHLNNN was previously identified as a selective binder to collagen type I with an affinity of 170 nM. Radiolabelled LRELHLNNN thus constitute a potential PET tracer for fibrosis.MethodLRELHLNNN was conjugated to a DOTA/NOTA moiety via a PEG2-linker. DOTA-PEG2-LRELHLNNN was labelled with Gallium-68 and NOTA- PEG2-LRELHLNNN with aluminium fluoride-18. Biodistribution of [68Ga]Ga-DOTA-PEG2-LRELHLNNN and [18F]AlF-NOTA-PEG2-LRELHLNNN was performed in healthy rats ex vivo and in vivo. The 68Ga-labelled analogue was evaluated in a mouse model of liver fibrosis by PET/MRI-imaging. The human predicted dosimetry of the tracers was extrapolated from rat ex vivo biodistribution studies at 10, 20, 40, 60, 120, 180 min (only fluoride-18) post-injection.ResultsThe peptides were successfully radiolabelled with gallium-68 and aluminium fluoride-18, respectively. The biodistribution of [68Ga]Ga-DOTA-PEG2-LRELHLNNN and [18F]AlF-NOTA-PEG2-LRELHLNNN was favorable showing rapid clearance and low background binding in organs where fibrosis may develop. Binding of [68Ga]Ga-DOTA-PEG2-LRELHLNNN to fibrotic liver was higher than surrounding tissues in mice with induced hepatic fibrosis. However, the binding was in the range of SUV 0.3, indicating limited targeting of the tracer to liver. The extrapolated human predicted dosimetric profiles of [68Ga]Ga-DOTA-PEG2-LRELHLNNN and [18F]AlF-NOTA-PEG2-LRELHLNNN were beneficial, potentially allowing at least three PET examinations annually.ConclusionsWe describe the modification, radiolabelling and evaluation of the collagen type I binding peptide LRELHLNNN. The resulting radiotracer analogues demonstrated suitable biodistribution and dosimetry. [68Ga]Ga-DOTA-PEG2-LRELHLNNN exhibited binding to hepatic fibrotic lesions and is a promising tool for PET imaging of fibrosis.Advances in knowledgeValidation of a new collagen targeting PET tracer.Implications for patient careEarly, non-invasive diagnosis and stratification of fibrosis in order to improve the diagnosis, staging and treatment of patients with diseases involving fibrosis.
  •  
12.
  • Velikyan, Irina, 1966-, et al. (författare)
  • GMP production of [Ga-68]Ga-BOT5035 for imaging of liver fibrosis in microdosing phase 0 study
  • 2020
  • Ingår i: Nuclear Medicine and Biology. - : ELSEVIER SCIENCE INC. - 0969-8051 .- 1872-9614. ; 88-89, s. 73-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Early detection of liver fibrosis and monitoring response to treatment crucial for the management of patients are currently not feasible in clinical practice. Platelet derived growth factor receptor beta (PDGER-beta) expression is regarded as a potential biomarker to determine the stages of fibrotic diseases including liver fibrosis. [Ga-68]Ga-BOT5035 comprising a bicyclic peptide was developed for specific targeting of ppGrR-beta overexpressed in pathological fibrosis. The realization of microdosing phase 0 study using [Ga-68]Ga-BOT5035 positron emission tomography required automated good manufacturing practice (GMP) compliant production of [Ga-68]Ga-BOT5035 presented herein. Moreover, the investigation of radiation dosimetry was conducted to ensure possibility of multiple annual examinations for disease monitoring in clinical setup.Methods: The active pharmaceutical ingredient starting material BOT5035 (GMP grade) was provided by BiOrion Technologies BV. The Ga-68-labelling process was developed and automated using synthesis platform (ModularLab PharmTrace, Eckert & Ziegler), disposable cassettes for Ga-68-labelling, and pharmaceutical grade Ge-68/Ga-68 generator (GalliaPharm (R)) purchased from Eckert & Ziegler. Radiolysis sensitive BOT5035 required development and systematic optimization of the labelling synthesis parameters such as time, temperature, precursor concentration, radical scavenger, buffer concentration and pH. The validation process was conducted with regard to the product quality and quantity, as well as production reproducibility. Human organ equivalent doses and total body effective doses were calculated using Organ Level Internal Dose Assessment Code software (OLINDA/EXM 1.1), based on ex vivo organ distribution in Sprague-Dawley rats.Results: The GMP compliant automated production of [Ga-68]Ga-BOT5035 with on-line documentation demonstrated high reproducibility. The time for the labelling synthesis and quality control was approximately 60 min. The non-decay corrected radiochemical yield and radiochemical purity of the radiopharmaceutical were 43.7 +/- 7.6% (n = 3, process validation) and 97.7 +/- 0.4% (n = 3, process validation), respectively. Predefined acceptance criteria were met for the sterility, endotoxins level, radionuclidic purity and residual solvent content. The stability at ambient temperature was controlled for 120 min with approved results. Ex vivo organ distribution data revealed fast blood clearance and washout from most of the organs. The dose-limiting organs were kidney and bone marrow. The total effective dose as limiting parameter would allow for up to 3-4 PET scans per annum.Conclusion: The fully automated and GMP compliant production of [Ga-68]Ga-BOT5035 was developed and thoroughly validated. The radiopharmaceutical was approved by Swedish Medicinal Products Agency and the Ethical Review Authority for the Phase 0 clinical study of the quantitative imaging of liver fibrosis. Human dosimetry calculations extrapolated from animal experiment indicated possibility of 3-4 PET examinations per year.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy