SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ala Chandu) "

Search: WFRF:(Ala Chandu)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bandaru, Sashidar, et al. (author)
  • Filamin A regulates cardiovascular remodeling
  • 2021
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:12
  • Research review (peer-reviewed)abstract
    • Filamin A (FLNA) is a large actin‐binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C‐ terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in hu-mans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.
  •  
2.
  • Bandaru, Sashidar, et al. (author)
  • Lack of RAC1 in macrophages protects against atherosclerosis.
  • 2020
  • In: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 15:9
  • Journal article (peer-reviewed)abstract
    • The Rho GTPase RAC1 is an important regulator of cytoskeletal dynamics, but the role of macrophage-specific RAC1 has not been explored during atherogenesis. We analyzed RAC1 expression in human carotid atherosclerotic plaques using immunofluorescence and found higher macrophage RAC1 expression in advanced plaques compared with intermediate human atherosclerotic plaques. We then produced mice with Rac1-deficient macrophages by breeding conditional floxed Rac1 mice (Rac1fl/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter (LC). Atherosclerosis was studied in vivo by infecting Rac1fl/fl and Rac1fl/fl/LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Rac1fl/fl/LC macrophages secreted lower levels of IL-6 and TNF-α and exhibited reduced foam cell formation and lipid uptake. The deficiency of Rac1 in macrophages reduced the size of aortic atherosclerotic plaques in AdPCSK9-infected Rac1fl/fl/LC mice. Compare with controls, intima/media ratios, the size of necrotic cores, and numbers of CD68-positive macrophages in atherosclerotic plaques were reduced in Rac1-deficient mice. Moreover, we found that RAC1 interacts with actin-binding filamin A. Macrophages expressed increased RAC1 levels in advanced human atherosclerosis. Genetic inactivation of RAC1 impaired macrophage function and reduced atherosclerosis in mice, suggesting that drugs targeting RAC1 may be useful in the treatment of atherosclerosis.
  •  
3.
  • Bandaru, Sashidar, et al. (author)
  • Targeting filamin A reduces macrophage activity and atherosclerosis. : Filamin A in atherogenesis
  • 2019
  • In: Circulation. - 1524-4539. ; 140:1, s. 67-79
  • Journal article (peer-reviewed)abstract
    • The actin-binding protein FLNA (filamin A) regulates signal transduction important for cell locomotion, but the role of macrophage-specific FLNA during atherogenesis has not been explored.We analyzed FLNA expression in human carotid atherosclerotic plaques by immunofluorescence. We also produced mice with Flna-deficient macrophages by breeding conditional Flna-knockout mice ( Flna o/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter ( LC). Atherosclerosis in vivo was studied by transplanting bone marrow from male Flna o/fl/ LC mice to atherogenic low-density lipoprotein receptor-deficient ( Ldlr-/-) mice; and by infecting Flna o/fl and Flna o/fl/ LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Furthermore, C57BL/6 mice were infected with AdPCSK9 and then treated with the calpain inhibitor calpeptin to inhibit FLNA cleavage.We found that macrophage FLNA expression was higher in advanced than in intermediate human atherosclerotic plaques. Flna o/fl/ LC macrophages proliferated and migrated less than controls; expressed lower levels of phosphorylated AKT and ERK1/2; exhibited reduced foam cell formation and lipid uptake; and excreted more lipids. The deficiency of Flna in macrophages markedly reduced the size of aortic atherosclerotic plaques in both Ldlr-/-BMT: Flnao/fl/LC and AdPCSK9-infected Flna o/fl/ LC mice. Intima/media ratios and numbers of CD68-positive macrophages in atherosclerotic plaques were lower in Flna-deficient mice than in control mice. Moreover, we found that STAT3 interacts with a calpain-cleaved carboxyl-terminal fragment of FLNA. Inhibiting calpain-mediated FLNA cleavage with calpeptin in macrophages reduced nuclear levels of phosphorylated STAT3, interleukin 6 secretion, foam cell formation, and lipid uptake. Finally, calpeptin treatment reduced the size of atherosclerotic plaques in C57BL/6 mice infected with AdPCSK9.Genetic inactivation of Flna and chemical inhibition of calpain-dependent cleavage of FLNA impaired macrophage signaling and function, and reduced atherosclerosis in mice, suggesting that drugs targeting FLNA may be useful in the treatment of atherosclerosis.
  •  
4.
  • Gul, Nadia, 1980, et al. (author)
  • The MTH1 inhibitor TH588 is a microtubule-modulating agent that eliminates cancer cells by activating the mitotic surveillance pathway
  • 2019
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Journal article (peer-reviewed)abstract
    • The mut-T homolog-1 (MTH1) inhibitor TH588 has shown promise in preclinical cancer studies but its targeting specificity has been questioned. Alternative mechanisms for the anti-cancer effects of TH588 have been suggested but the question remains unresolved. Here, we performed an unbiased CRISPR screen on human lung cancer cells to identify potential mechanisms behind the cytotoxic effect of TH588. The screen identified pathways and complexes involved in mitotic spindle regulation. Using immunofluorescence and live cell imaging, we showed that TH588 rapidly reduced microtubule plus-end mobility, disrupted mitotic spindles, and prolonged mitosis in a concentration-dependent but MTH1-independent manner. These effects activated a USP28-p53 pathway -the mitotic surveillance pathway -that blocked cell cycle reentry after prolonged mitosis; USP28 acted upstream of p53 to arrest TH588-treated cells in the G1-phase of the cell cycle. We conclude that TH588 is a microtubule-modulating agent that activates the mitotic surveillance pathway and thus prevents cancer cells from re-entering the cell cycle.
  •  
5.
  • Salimi, Reza, et al. (author)
  • Blocking the cleavage of filamin A by calpain inhibitor decreases tumor cell growth
  • 2018
  • In: Anticancer Research. - : Anticancer Research USA Inc.. - 0250-7005 .- 1791-7530. ; 38:4, s. 2079-2085
  • Journal article (peer-reviewed)abstract
    • Filamin A (FLNA) is the most abundant and widely expressed isoform of filamin in human tissues. It is cleaved by calpain at the hinge 1 and 2 domains, producing a 90-kDa carboxyl-terminal fragment (FLNACT). Recently, it has been shown that FLNACTmediates cell signaling and transports transcription factors into the cell nucleus. However, the significance of cleavage of FLNA by calpain has not been studied in cancer cell growth. Calpeptin is a chemical inhibitor of both calpain 1 and 2 that cleaves FLNA. In this study, we questioned if inhibiting calpain using calpeptin would decrease tumor cell proliferation, migration, invasion, and colony formation.Human melanoma (A7), prostate cancer (PC3), mouse fibrosarcoma (T241) and endothelial (MS1) cells were assayed for proliferation, migration, invasion and colony formation after treatment with calpeptin. Cell lysates were immunoblotted for FLNA and FLNACTResults: Calpeptin treatment of these cells resulted in a decreased production of FLNACTCalpeptin-treated human and mouse tumor cells displayed impaired proliferation, migration, and colony formation.These data suggest that the cleavage of FLNA by calpain is an important cellular event in the regulation of tumor cell growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view