SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andreae M. O.) srt2:(2005-2009)"

Sökning: WFRF:(Andreae M. O.) > (2005-2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gunthe, S. S., et al. (författare)
  • Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 9:19, s. 7551-7575
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of kappa approximate to 0.1-0.4 (0.16+/-0.06 arithmetic mean and standard deviation). The overall median value of kappa approximate to 0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (kappa approximate to 0.1 at D approximate to 50 nm; kappa approximate to 0.2 at D approximate to 200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (f(org)) was on average as high as similar to 90% in the Aitken mode (D <= 100 nm) and decreased with increasing particle diameter in the accumulation mode (similar to 80% at D approximate to 200 nm). The kappa values exhibited a negative linear correlation with f(org) (R-2=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: kappa(org)approximate to 0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and kappa(inorg)approximate to 0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (kappa(p)=kappa(org) x f(org)+kappa(inorg) x f(inorg)). The CCN number concentrations predicted with kappa(p) were in fair agreement with the measurement results (similar to 20% average deviation). The median CCN number concentrations at S=0.1-0.82% ranged from N-CCN,N-0.10 approximate to 35 cm(-3) to N-CCN,N-0.82 approximate to 160 cm(-3), the median concentration of aerosol particles larger than 30 nm was N-CN,N-30 approximate to 200 cm(-3), and the corresponding integral CCN efficiencies were in the range of N-CCN,N-0.10/NCN,N-30 approximate to 0.1 to N-CCN,N-0.82/NCN,N-30 approximate to 0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of N-CCN,N-S assuming an approximate global average value of kappa approximate to 0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded similar to 50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (<= 100 cm(-3)). Model calculations assuming aconstant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: similar to 60% for the campaign average distribution and similar to 1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.
  •  
2.
  • Freud, E., et al. (författare)
  • Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds
  • 2008
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:6, s. 1661-1675
  • Tidskriftsartikel (refereegranskat)abstract
    • In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by similar to 350 m for each additional 100 cloud condensation nuclei per cm(3) at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of similar to 2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm(3). The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (r(e)) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their r(e) as if they had been measured inside one well developed cloud. The dependence of r(e) on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at r(e)>=similar to 10 mu m. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at r(e)=similar to 10 mu m, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in r(e) due to evaporation.
  •  
3.
  • Schkolnik, G., et al. (författare)
  • Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements
  • 2007
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 41:5, s. 1107-1118
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of biomass burning aerosols in the climate system is still poorly quantified, in part due to uncertainties regarding the optical properties of elemental and organic carbon (EC and OC, respectively), the main constituents of pyrogenic aerosols. In this study, we utilize comprehensive physical and chemical field measurements of biomass burning aerosols in Brazil to constrain the densities and refractive indices (RI) of EC and OC in these particles, by comparing their optically and chemically derived RI. The optically derived effective RI are retrieved from the measured absorption and scattering coefficients using a Mie scattering algorithm, and serve as a reference dataset, while the chemically derived effective RI are calculated from the measured chemical composition using electromagnetic mixing rules. The results are discussed in light of the observed combustion conditions, and in an effort to derive conclusions as to the chemical and optical properties of the usually less well-characterized components of biomass burning aerosols, namely, elemental carbon and organic matter. The best agreement between the optically and chemically derived RI was achieved by assigning a density of rho(EC) = 1.8 g cm(-3) and refractive index RIEC = 1.87 - 0.22i to the EC component, and rho = 0.9 g cm(-3) and RI = 1.4 - 0i to the unidentified organic matter fraction of the particles. These parameters suggest low graphitization levels for the EC, and a dominant proportion of aliphatic compounds in the unidentified organic matter. Combining the density and RI of the unidentified organic matter with the properties of the chemically characterized organic fraction yields rho = 1.1 g cm(-3) and RI = 1.3 - 0i for the total aerosol OC. (c) 2006 Elsevier Ltd. All rights reserved.
  •  
4.
  • Vestin, A, et al. (författare)
  • Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling
  • 2007
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 112:D14
  • Tidskriftsartikel (refereegranskat)abstract
    • The cloud-nucleating properties of the atmospheric aerosol were studied in an area under strong influence of vegetation burning. The measurements were part of Large-Scale Biosphere Atmosphere Experiment in Amazonia-Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) and were carried out at a ground site located in the state of Rondonia in southwestern Amazonia, Brazil, September to November 2002, covering the dry season, a transition period, and the onset of the wet season. The concentrations of cloud condensation nuclei (CCN) were measured with a static thermal gradient CCN counter for supersaturations ranging between 0.23 and 1.12%. As a closure test, the CCN concentrations were predicted with a time resolution of 10 min from measurements of the dry particle number size distribution (3-850 nm, Differential Mobility Analyzer (DMPS)) and hygroscopic growth at 90% relative humidity (Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA)). No chemical information was needed. The predicted and measured CCN concentrations were highly correlated (r(2)=0.97-0.99), and the predictions were only slightly lower than those measured, typically by 15-20%. Parameterizations of the predicted CCN concentrations are given for each of the three meteorological periods. These are based on averages taken during the afternoon hours when the measurements at ground level were representative for the aerosol entering the base of convective clouds. Furthermore, a more detailed parameterization including the mixing state of the aerosol is given, where the hygroscopic properties are expressed as the number of soluble ions or nondissociating molecules per unit volume dry particle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy