SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ashton G.) srt2:(2020-2024)"

Sökning: WFRF:(Ashton G.) > (2020-2024)

  • Resultat 1-25 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
3.
  • Collins, C. G., et al. (författare)
  • Experimental warming differentially affects vegetative and reproductive phenology of tundra plants
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra. It is unclear whether climate driven phenological shifts of tundra plants are consistent across the plant growing season. Here the authors analyse data from a network of field warming experiments in Arctic and alpine tundra, finding that warming differentially affects the timing and duration of reproductive and vegetative phenology.
  •  
4.
  • Needham, E. J., et al. (författare)
  • Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:11, s. 4097-4107
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible. Needham et al. reveal elevations in blood biomarkers of brain injury in patients hospitalised with COVID-19. The changes, which were severity-dependent, were associated with dysregulated immune responses including increases in pro-inflammatory cytokines and autoantibodies. Ongoing active brain injury could still be seen months after infection.
  •  
5.
  • Abazajian, Kevork, et al. (författare)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
6.
  • Boccardi, M., et al. (författare)
  • The strategic biomarker roadmap for the validation of Alzheimer's diagnostic biomarkers: methodological update
  • 2021
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48, s. 2070-2085
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. Methods We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. Results The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. Discussion This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.
  •  
7.
  • Ferrari-Souza, J. P., et al. (författare)
  • APOEε4 potentiates amyloid β effects on longitudinal tau pathology
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms by which the apolipoprotein E epsilon 4 (APOE epsilon 4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOE epsilon 4 carriership and amyloid-beta (A beta) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOE epsilon 4 carriership potentiates A beta effects on longitudinal tau accumulation over 2 years. The APOE epsilon 4-potentiated A beta effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217(+)) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOE epsilon 4 allele plays a key role in A beta downstream effects on the aggregation of phosphorylated tau in the living human brain.
  •  
8.
  • Ferreira, P. C. L., et al. (författare)
  • Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:10, s. 4463-4474
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONPhosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-& beta; (A & beta;) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify A & beta; and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODSWe assessed 138 CU and 87 CI with available plasma p-tau231, 217(+), and 181, A & beta;42/40, GFAP and A & beta;- and tau-PET. RESULTSIn CU, only plasma p-tau231 and p-tau217(+) significantly improved the performance of the demographics in detecting A & beta;-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217(+) and GFAP significantly contributed to demographics to identify both A & beta;-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSIONOur results support plasma p-tau231 and p-tau217(+) as state markers of early A & beta; deposition, but in later disease stages they inform on tau tangle accumulation. HighlightsIt is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex).Plasma p-tau231 and p-tau217(+) contribute to demographic information to identify brain A & beta; pathology in preclinical AD.In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217(+) and GFAP inform on both A & beta; deposition and tau pathology.
  •  
9.
  • Gamble, LD, et al. (författare)
  • A G316A Polymorphism in the Ornithine Decarboxylase Gene Promoter Modulates MYCN-Driven Childhood Neuroblastoma
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein.
  •  
10.
  • Lessa Benedet, Andréa, et al. (författare)
  • Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum
  • 2021
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:12, s. 1471-1483
  • Tidskriftsartikel (refereegranskat)abstract
    • Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-beta (A beta)-positive and A beta-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating A beta pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer's and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisiere cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-beta 42/40 (A beta 42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisiere participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) A beta-negative individuals (TRIAD: A beta-negative mean [SD], 185.1 [93.5] pg/mL, A beta-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: A beta-negative mean [SD], 121.9 [42.4] pg/mL, A beta-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU A beta-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] A beta-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU A beta-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI A beta-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU A beta-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated A beta-positive from A beta-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant A beta pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and A beta pathology even among individuals in the early stages of AD. This cross-sectional cohort study evaluates plasma glial fibrillary acidic protein levels throughout the entire Alzheimer disease continuum, from preclinical Alzheimer disease to Alzheimer disease dementia, compared with cerebrospinal fluid glial fibrillary acidic protein.
  •  
11.
  • Salvado, G., et al. (författare)
  • Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum
  • 2022
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 49, s. 4567-4579
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([F-18]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. Methods We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-beta (A beta) positive. Associations between GFAP markers and [F-18]FDG uptake were studied. We also investigated whether these associations were modified by A beta and tau status (AT stages). Results Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [F-18]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of A beta pathology but became negative in A beta-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. Conclusions Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes.
  •  
12.
  • Ally, M., et al. (författare)
  • Cross-sectional and longitudinal evaluation of plasma glial fibrillary acidic protein to detect and predict clinical syndromes of Alzheimer's disease
  • 2023
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - 2352-8729. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: This study examined plasma glial fibrillary acidic protein (GFAP) as a biomarker of cognitive impairment due to Alzheimer's disease (AD) with and against plasma neurofilament light chain (NfL), and phosphorylated tau (p-tau)181+231.Methods: Plasma samples were analyzed using Simoa platform for 567 participants spanning the AD continuum. Cognitive diagnosis, neuropsychological testing, and dementia severity were examined for cross-sectional and longitudinal outcomes.Results: Plasma GFAP discriminated AD dementia from normal cognition (adjusted mean difference = 0.90 standard deviation [SD]) and mild cognitive impairment (adjusted mean difference = 0.72 SD), and demonstrated superior discrimination compared to alternative plasma biomarkers. Higher GFAP was associated with worse dementia severity and worse performance on 11 of 12 neuropsychological tests. Longitudinally, GFAP predicted decline in memory, but did not predict conversion to mild cognitive impairment or dementia.Discussion: Plasma GFAP was associated with clinical outcomes related to suspected AD and could be of assistance in a plasma biomarker panel to detect in vivo AD.
  •  
13.
  • Altomare, D., et al. (författare)
  • Plasma biomarkers for Alzheimer's disease: a field-test in a memory clinic
  • 2023
  • Ingår i: Journal of Neurology Neurosurgery and Psychiatry. - 0022-3050. ; 94:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The key Alzheimer's disease (AD) biomarkers are traditionally measured with techniques/exams that are either expensive (amyloid-positron emission tomography (PET) and tau-PET), invasive (cerebrospinal fluid A beta 42 and p-tau 181), or poorly specific (atrophy on MRI and hypometabolism on fluorodeoxyglucose-PET). Recently developed plasma biomarkers could significantly enhance the efficiency of the diagnostic pathway in memory clinics and improve patient care. This study aimed to: (1) confirm the correlations between plasma and traditional AD biomarkers, (2) assess the diagnostic accuracy of plasma biomarkers as compared with traditional biomarkers, and (3) estimate the proportion of traditional exams potentially saved thanks to the use of plasma biomarkers. Methods Participants were 200 patients with plasma biomarkers and at least one traditional biomarker collected within 12 months. Results Overall, plasma biomarkers significantly correlated with biomarkers assessed through traditional techniques: up to r=0.50 (p<0.001) among amyloid, r=0.43 (p=0.002) among tau, and r=-0.23 (p=0.001) among neurodegeneration biomarkers. Moreover, plasma biomarkers showed high accuracy in discriminating the biomarker status (normal or abnormal) determined by using traditional biomarkers: up to area under the curve (AUC)=0.87 for amyloid, AUC=0.82 for tau, and AUC=0.63 for neurodegeneration status. The use of plasma as a gateway to traditional biomarkers using cohort-specific thresholds (with 95% sensitivity and 95% specificity) could save up to 49% of amyloid, 38% of tau, and 16% of neurodegeneration biomarkers. Conclusion The implementation of plasma biomarkers could save a remarkable proportion of more expensive traditional exams, making the diagnostic workup more cost-effective and improving patient care.
  •  
14.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:5, s. 1913-1924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. Methods In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (A beta 42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF A beta 42/p-tau ratio. Results All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF A beta 42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). Discussion Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. Highlights Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts.
  •  
15.
  • Assogna, M., et al. (författare)
  • Association of Choroid Plexus Volume With Serum Biomarkers, Clinical Features, and Disease Severity in Patients With Frontotemporal Lobar Degeneration Spectrum
  • 2023
  • Ingår i: NEUROLOGY. - 0028-3878. ; 101:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and ObjectivesChoroid plexus (ChP) is emerging as a key brain structure in the pathophysiology of neurodegenerative disorders. In this observational study, we investigated ChP volume in a large cohort of patients with frontotemporal lobar degeneration (FTLD) spectrum to explore a possible link between ChP volume and other disease-specific biomarkers.MethodsParticipants included patients meeting clinical criteria for a probable syndrome in the FTLD spectrum. Structural brain MRI imaging, serum neurofilament light (NfL), serum phosphorylated-Tau181 (p-Tau181), and cognitive and behavioral data were collected. MRI ChP volumes were obtained from an ad-hoc segmentation model based on a Gaussian Mixture Models algorithm.ResultsThree-hundred and sixteen patients within FTLD spectrum were included in this study, specifically 135 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD), 75 primary progressive aphasia, 46 progressive supranuclear palsy, and 60 corticobasal syndrome. In addition, 82 age-matched healthy participants were recruited as controls (HCs). ChP volume was significantly larger in patients with FTLD compared with HC, across the clinical subtype. Moreover, we found a significant difference in ChP volume between HC and patients stratified for disease-severity based on CDR plus NACC FTLD, including patients at very early stage of the disease. Interestingly, ChP volume correlated with serum NfL, cognitive/behavioral deficits, and with patterns of cortical atrophy. Finally, ChP volume seemed to discriminate HC from patients with FTLD better than other previously identified brain structure volumes.DiscussionConsidering the clinical, pathologic, and genetic heterogeneity of the disease, ChP could represent a potential biomarker across the FTLD spectrum, especially at the early stage of disease. Further longitudinal studies are needed to establish its role in disease onset and progression.Classification of EvidenceThis study provides Class III evidence that choroid plexus volume, as measured on MRI scan, can assist in differentiating patients with FTLD from healthy controls and in characterizing disease severity.
  •  
16.
  • Bellaver, B., et al. (författare)
  • Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Nature Medicine. - 1078-8956. ; 29:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional and longitudinal analyses of tau pathology in preclinical Alzheimer's disease reveal that tau tangles accumulate as a function of amyloid-beta burden only in individuals positive for an astrocyte reactivity biomarker. An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-beta (A beta)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash A beta effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of A beta with tau phosphorylation in CU individuals. We found that A beta was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast(+)). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of A beta only in CU Ast(+) individuals. Our findings suggest astrocyte reactivity as an important upstream event linking A beta with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
  •  
17.
  • Bellaver, B., et al. (författare)
  • Blood-brain barrier integrity impacts the use of plasma amyloid-beta as a proxy of brain amyloid-beta pathology
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:9, s. 3815-3825
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION Amyloid-beta (A beta) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers.METHODS We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography A beta, p-tau, and albumin measures.RESULTS Plasma A beta(42/40) better identified CSF A beta(42/40) and A beta-PET positivity in individuals with high BBB permeability. An interaction between plasma A beta(42/40) and BBB permeability on CSF A beta(42/40) was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma A beta was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels.DISCUSSION These findings suggest that BBB integrity may influence the performance of plasma A beta, but not p-tau, biomarkers in research and clinical settings.
  •  
18.
  • Ferrari-Souza, J. P., et al. (författare)
  • APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal studies suggest that the apolipoprotein E epsilon 4 (APOE epsilon 4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOE epsilon 4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomog-raphy for amyloid-beta (A beta; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOE epsilon 4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for A beta and tau deposition. Furthermore, microglial acti-vation mediated the A beta-independent effects of APOE epsilon 4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOE epsilon 4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOE epsilon 4 genotype exerts A beta-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.
  •  
19.
  • Mila-Aloma, M., et al. (författare)
  • Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer's disease
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28, s. 1797-1801
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive comparison of Alzheimer's disease blood biomarkers in cognitively unimpaired individuals reveals that plasma p-tau231 and p-tau217 capture very early A beta changes, showing promise as markers to enrich a preclinical population for Alzheimer's disease clinical trials Blood biomarkers indicating elevated amyloid-beta (A beta) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient A beta pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and A beta 42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest A beta burden. Plasma p-tau231 and p-tau217 had the strongest association with A beta positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in A beta PET uptake in individuals without overt A beta pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral A beta changes, before overt A beta plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials.
  •  
20.
  • Morrison, M. S., et al. (författare)
  • Ante-mortem plasma phosphorylated tau (181) predicts Alzheimer's disease neuropathology and regional tau at autopsy
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:10, s. 3546-3557
  • Tidskriftsartikel (refereegranskat)abstract
    • In one of the largest studies of its kind, Morrison et al. show that ante-mortem plasma phosphorylated-tau(181) concentrations accurately differentiate brain donors with and without autopsy-confirmed Alzheimer's disease. Blood tests could be a minimally invasive, cost-effective tool for the detection and monitoring of Alzheimer's disease. Blood-based biomarkers such as tau phosphorylated at threonine 181 (phosphorylated-tau(181)) represent an accessible, cost-effective and scalable approach for the in vivo detection of Alzheimer's disease pathophysiology. Plasma-pathological correlation studies are needed to validate plasma phosphorylated-tau(181) as an accurate and reliable biomarker of Alzheimer's disease neuropathological changes. This plasma-to-autopsy correlation study included participants from the Boston University Alzheimer's Disease Research Center who had a plasma sample analysed for phosphorylated-tau(181) between 2008 and 2018 and donated their brain for neuropathological examination. Plasma phosphorelated-tau(181) was measured with single molecule array technology. Of 103 participants, 62 (60.2%) had autopsy-confirmed Alzheimer's disease. Average time between blood draw and death was 5.6 years (standard deviation = 3.1 years). Multivariable analyses showed higher plasma phosphorylated-tau(181) concentrations were associated with increased odds for having autopsy-confirmed Alzheimer's disease [AUC = 0.82, OR = 1.07, 95% CI = 1.03-1.11, P < 0.01; phosphorylated-tau standardized (z-transformed): OR = 2.98, 95% CI = 1.50-5.93, P < 0.01]. Higher plasma phosphorylated-tau(181) levels were associated with increased odds for having a higher Braak stage (OR = 1.06, 95% CI = 1.02-1.09, P < 0.01) and more severe phosphorylated-tau across six cortical and subcortical brain regions (ORs = 1.03-1.06, P < 0.05). The association between plasma phosphorylated-tau(181) and Alzheimer's disease was strongest in those who were demented at time of blood draw (OR = 1.25, 95%CI = 1.02-1.53), but an effect existed among the non-demented (OR = 1.05, 95% CI = 1.01-1.10). There was higher discrimination accuracy for Alzheimer's disease when blood draw occurred in years closer to death; however, higher plasma phosphorylated-tau(181) levels were associated with Alzheimer's disease even when blood draw occurred >5 years from death. Ante-mortem plasma phosphorylated-tau(181) concentrations were associated with Alzheimer's disease neuropathology and accurately differentiated brain donors with and without autopsy-confirmed Alzheimer's disease. These findings support plasma phosphorylated-tau(181) as a scalable biomarker for the detection of Alzheimer's disease.
  •  
21.
  • Muscarella, Robert, et al. (författare)
  • The global abundance of tree palms
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
22.
  • Prevéy, Janet S., et al. (författare)
  • The tundra phenology database: more than two decades of tundra phenology responses to climate change
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 1026-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collec-tion of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215).
  •  
23.
  • Salvadó, Gemma, et al. (författare)
  • Specific associations between plasma biomarkers and postmortem amyloid plaque and tau tangle loads
  • 2023
  • Ingår i: Embo Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Several promising plasma biomarkers for Alzheimer's disease have been recently developed, but their neuropathological correlates have not yet been fully determined. To investigate and compare independent associations between multiple plasma biomarkers (p-tau181, p-tau217, p-tau231, A beta 42/40, GFAP, and NfL) and neuropathologic measures of amyloid and tau, we included 105 participants from the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND) with antemortem plasma samples and a postmortem neuropathological exam, 48 of whom had longitudinal p-tau217 and p-tau181. When simultaneously including plaque and tangle loads, the A beta 42/40 ratio and p-tau231 were only associated with plaques (rho(A beta 42/40)[95%CI] = -0.53[-0.65, -0.35], rho(p-tau231)[95%CI] = 0.28[0.10, 0.43]), GFAP was only associated with tangles (rho(GFAP)[95%CI] = 0.39[0.17, 0.57]), and p-tau217 and p-tau181 were associated with both plaques (rho(p-tau217)[95%CI] = 0.40[0.21, 0.56], rho(p-tau181)[95%CI] = 0.36[0.15, 0.50]) and tangles (rho(p-tau217)[95%CI] = 0.52[0.34, 0.66]; rho(p-tau181)[95%CI] = 0.36[0.17, 0.52]). A model combining p-tau217 and the A beta 42/40 ratio showed the highest accuracy for predicting the presence of Alzheimer's disease neuropathological change (ADNC, AUC[95%CI] = 0.89[0.82, 0.96]) and plaque load (R-2 = 0.55), while p-tau217 alone was optimal for predicting tangle load (R-2 = 0.45). Our results suggest that high-performing assays of plasma p-tau217 and A beta 42/40 might be an optimal combination to assess Alzheimer's-related pathology in vivo.
  •  
24.
  • Sarin, Nikhil, et al. (författare)
  • Low-efficiency long gamma-ray bursts : a case study with AT2020blt
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 512:1, s. 1391-1399
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility recently announced the detection of an optical transient AT2020blt at redshift z = 2.9, consistent with the afterglow of an on-axis gamma-ray burst. However, no prompt emission was observed. We analyse AT2020blt with detailed models, showing the data are best explained as the afterglow of an on-axis long gamma-ray burst, ruling out other hypotheses such as a cocoon and a low-Lorentz factor jet. We search Fermi data for prompt emission, setting deeper upper limits on the prompt emission than in the original detection paper. Together with KONUS-Wind observations, we show that the gamma-ray efficiency of AT2020blt is less than or similar to 0.3-4.5 per cent. We speculate that AT2020blt and AT2021any belong to the low-efficiency tail of long gamma-ray burst distributions that are beginning to be readily observed due to the capabilities of new observatories like the Zwicky Transient Facility.
  •  
25.
  • Theakstone, Ashton G., et al. (författare)
  • Vibrational spectroscopy for the triage of traumatic brain injury computed tomography priority and hospital admissions
  • 2022
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 39:11-12, s. 773-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Computed tomography (CT) brain imaging is routinely used to support clinical decision-making in patients with traumatic brain injury (TBI). Only 7% of scans, however, demonstrate evidence of TBI. The other 93% of scans contribute a significant cost to the healthcare system and a radiation risk to patients. There may be better strategies to identify which patients, particularly those with mild TBI, are at risk of deterioration and require hospital admission. We introduce a blood serum liquid biopsy that utilizes attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy with machine learning algorithms as a decision-making tool to identify which patients with mild TBI will most likely present with a positive CT scan. Serum samples were obtained from patients (n = 298) patients who had acquired a TBI and were enrolled in CENTER-TBI and from asymptomatic control patients (n = 87). Injury patients (all severities) were stratified against non-injury controls. The cohort with mild TBI was further examined by stratifying those who had at least one CT abnormality against those who had no CT abnormalities. The test performed exceptionally well in classifications of patients with mild injury versus non-injury controls (sensitivity = 96.4% and specificity = 98.0%) and also provided a sensitivity of 80.2% when stratifying mild patients with at least one CT abnormality against those without. The results provided illustrate the test ability to identify four of every five CT abnormalities and show great promise to be introduced as a triage tool for CT priority in patients with mild TBI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 65
Typ av publikation
tidskriftsartikel (62)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Ashton, Nicholas J. (42)
Zetterberg, Henrik, ... (40)
Blennow, Kaj, 1958 (39)
Karikari, Thomas (26)
Lessa Benedet, André ... (20)
Therriault, J. (17)
visa fler...
Rosa-Neto, P. (17)
Tissot, C. (17)
Pascoal, T. A. (17)
Gauthier, S (15)
Lussier, F. Z. (14)
Stevenson, J (13)
Servaes, S. (13)
Rahmouni, N. (13)
Chamoun, M. (12)
Bezgin, G. (10)
Zimmer, E. R. (9)
Ferrari-Souza, J. P. (9)
Wang, Y. T. (9)
Lantero Rodriguez, J ... (8)
Ferreira, P. C. L. (8)
Tudorascu, D. L. (8)
Brum, Wagner S. (7)
Triana-Baltzer, G. (7)
Bellaver, B (7)
Leffa, D. T. (7)
Villemagne, V. L. (7)
Klunk, W. E. (7)
Macedo, A. C. (7)
Suarez-Calvet, M. (6)
Povala, G. (6)
Kang, M. S. (6)
Soucy, J. P. (6)
Montoliu-Gaya, Laia (5)
Garibotto, V (5)
Vanmechelen, E (5)
Kolb, H. C. (5)
Lopez, O. L. (5)
Pallen, V. (5)
Poltronetti, N. M. (5)
Nordberg, A (4)
Mila-Aloma, M. (4)
Minguillon, C. (4)
Snellman, Anniina (4)
Drzezga, A (4)
Frisoni, G. B. (4)
Dodich, A. (4)
Boccardi, M. (4)
Cohen, A. D. (4)
Massarweh, G. (4)
visa färre...
Lärosäte
Göteborgs universitet (47)
Karolinska Institutet (13)
Lunds universitet (10)
Umeå universitet (3)
Uppsala universitet (3)
Chalmers tekniska högskola (3)
visa fler...
Stockholms universitet (2)
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (65)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (45)
Naturvetenskap (14)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy