SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Assmann Karen) srt2:(2017)"

Sökning: WFRF:(Assmann Karen) > (2017)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kimura, Satoshi, et al. (författare)
  • Oceanographic controls on the variability of ice-shelf basal melting and circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica
  • 2017
  • Ingår i: Journal of Geophysical Research - Oceans. - 0148-0227 .- 2156-2202. ; 122:12, s. 10131-10155
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice Shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here, we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June to October) than in austral summer (December to March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf.
  •  
2.
  • Nerentorp, Michelle, 1986, et al. (författare)
  • Speciation of mercury in the waters of the Weddell, Amundsen and Ross Seas (Southern Ocean)
  • 2017
  • Ingår i: Marine Chemistry. - : Elsevier BV. - 0304-4203 .- 1872-7581. ; 193, s. 20-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the distance from large anthropogenic emission sources, toxic mercury is transported via the atmosphere and oceans to the Southern Ocean. Seawater samples were collected at selected stations and were analysed for total mercury (HgT) (8 stations), dissolved gaseous mercury (DGM) (62 stations) and methylmercury (12 stations) during winter (Weddell Sea), spring (Weddell Sea) and summer (Amundsen and Ross Seas) in the Southern Ocean. The HgT distribution in water columns was found to not vary significantly with depth. In the Weddell Sea the average column concentration was higher in spring (2.6 +/- 1.3 pM, 2 stations) than in winter (2.0 +/- 1.0 pM, 6 stations). We hypothesize that the seasonal HgT increase is due to atmospheric deposition of particulate Hg(II) formed during atmospheric mercury depletion events (AMDEs), as well as the addition of inorganic mercury species from melting sea ice and snow. Furthermore, HgT concentrations found in this study were significantly higher than previously measured in the Southern Ocean (Cossa et al., 2011), which was hypothesized to be due to seasonal variations in atmospheric deposition. The average water column DGM concentration in the Weddell Sea was 454 +/- 254 fM in winter and 384 +/- 239 fM in spring. The lowest average DGM concentration was found in summer in the Amundsen and Ross Seas (299 +/- 137 fM). The highest observed concentration in winter was hypothesized to be caused by the larger sea ice coverage, which is known to reduce the evasion of Hg(0) from the sea surface. The average monomethylmercury (MMHg) concentration in the Weddell Sea was 60 +/- 30 fM in winter (6 stations) and 95 +/- 85 fM in spring (2 stations), showing no significant seasonal difference. In the Amundsen and Ross Seas the summer average concentration of MeHg (MMHg and dimethylmercury; DMHg) was 135 +/- 189 fM (4 stations). The highest MeHg concentration was found in modified circumpolar deep water, which is known to have high primary production. 2017 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy