SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergin E.) srt2:(2015-2019)"

Sökning: WFRF:(Bergin E.) > (2015-2019)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Leisawitz, David, et al. (författare)
  • The origins space telescope
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
6.
  • Leisawitz, David, et al. (författare)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
7.
  • Wiedner, M.C., et al. (författare)
  • Heterodyn receiver for the Origins Space Telescope concept 2
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope (OST) is a NASA study for a large satellite mission to be submitted to the 2020 Decadal Review. The proposed satellite has a fleet of instruments including the HEterodyne Receivers for OST (HERO). HERO is designed around the quest to follow the trail of water from the ISM to disks around protostars and planets. HERO will perform high-spectral resolution measurements with 2x9 pixel focal plane arrays at any frequency between 468GHz to 2,700GHz (617 to 111 μm). HERO builds on the successful Herschel/HIFI heritage, as well as recent technological innovations, allowing it to surpass any prior heterodyne instrument in terms of sensitivity and spectral coverage.
  •  
8.
  • Battersby, C., et al. (författare)
  • The Origins Space Telescope
  • 2018
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 2:8, s. 596-599
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Origins Space Telescope, one of four large Mission Concept Studies sponsored by NASA for review in the 2020 US Astrophysics Decadal Survey, will open unprecedented discovery space in the infrared, unveiling our cosmic origins.
  •  
9.
  • Benz, A. O., et al. (författare)
  • Water in star-forming regions with Herschel (WISH): VI. Constraints on UV and X-ray irradiation from a survey of hydrides in low- to high-mass young stellar objects
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590, s. Art. no. A105-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrides are simple compounds containing one or a few hydrogen atoms bonded to a heavier atom. They are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides such as CH+ and OH+ (and also HCO+), which affect the chemistry of molecules such as water, provide complementary information on irradiation by far-UV (FUV) or X-rays and gas temperature. Aims. We explore hydrides of the most abundant heavier elements in an observational survey covering young stellar objects (YSOs) with different mass and evolutionary state. The focus is on hydrides associated with the dense protostellar envelope and outflows, contrary to previous work that focused on hydrides in diffuse foreground clouds. Methods. Twelve YSOs were observed with HIFI on Herschel in six spectral settings providing fully velocity-resolved line profiles as part of the Water in star-forming regions with Herschel (WISH) program. The YSOs include objects of low (Class 0 and I), intermediate, and high mass, with luminosities ranging from 4 L? to 2 × 105 L?. Results. The targeted lines of CH+, OH+, H2O+, C+, and CH are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. The observed line parameters and correlations suggest two different origins related to gas entrained by the outflows and to the circumstellar envelope. The derived column densities correlate with bolometric luminosity and envelope mass for all molecules, best for CH, CH+, and HCO+. The column density ratios of CH+/OH+ are estimated from chemical slab models, assuming that the H2 density is given by the specific density model of each object at the beam radius. For the low-mass YSOs the observed ratio can be reproduced for an FUV flux of 2-400 times the interstellar radiation field (ISRF) at the location of the molecules. In two high-mass objects, the UV flux is 20-200 times the ISRF derived from absorption lines, and 300-600 ISRF using emission lines. Upper limits for the X-ray luminosity can be derived from H3O+ observations for some low-mass objects. Conclusions. If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 L?, is required. There is no molecular evidence for X-ray induced chemistry in the low-mass objects on the observed scales of a few 1000 AU. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.
  •  
10.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Water around IRAS 15398-3359 observed with ALMA
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595, s. Art no A39-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Understanding how protostars accrete their mass is one of the fundamental problems of star formation. High dust column densities and complex kinematical structures make direct observations challenging. Moreover, direct observations only provide a snapshot. Chemical tracers provide an interesting alternative to characterise the infall histories of protostars. Aims. We aim to map the distribution and kinematics of gaseous water towards the low-mass embedded protostar IRAS 15398-3359. Previous observations of H13CO+ showed a depression in the abundance towards IRAS 15398-3359. This is a sign of destruction of HCO+ by an enhanced presence of gaseous water in an extended region, possibly related to a recent burst in the accretion. Direct observations of water vapour can determine the exact extent of the emission and confirm the hypothesis that HCO+ is indeed a good tracer of the water snow-line. Methods. IRAS 15398-3359 was observed using the Atacama Large Millimeter/submillimeter Array (ALMA) at 0.5? resolution in two setups at 390 and 460 GHz. Maps of HDO (101-000) and were taken simultaneously with observations of the CS (8-7) and N2H+ (5-4) lines and continuum at 0.65 and 0.75 mm. The maps were interpreted using dust radiative transfer calculations of the protostellar infalling envelope with an outflow cavity. Results. HDO is clearly detected and extended over the scales of the H13CO+ depression, although it is displaced by ~500 AU in the direction of the outflow. HO is tentatively detected towards the red-shifted outflow lobe, but otherwise it is absent from the mapped region, which suggests that temperatures are low. Although we cannot entirely exclude a shock origin, this indicates that another process is responsible for the water emission. Conclusions. Based on the temperature structure obtained from dust radiative transfer models, we conclude that the water was most likely released from the grains in an extended hour-glass configuration during a recent accretion burst. HDO is only detected in the region closest to the protostar, at distances of up to 500 AU. These signatures can only be explained if the luminosity has recently been increased by orders of magnitudes. Additionally, the densities in the outflow cones must be sufficiently low.
  •  
11.
  • Goicoechea, J.R., et al. (författare)
  • VELOCITY-RESOLVED [C II] EMISSION AND [C II]/FIR MAPPING ALONG ORION WITH HERSCHEL
  • 2015
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 812:1, s. 75-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first ~7.′5 × 11.′5 velocity-resolved (~0.2 km/s) map of the [C II] 158 μm line toward the Orion molecular cloud1 (OMC1) taken with the Herschel/HIFI instrument. In combination with far-IR (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J = 2–1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/photodissociation region (PDR)/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C II] luminosity (~85%) is from the extended, FUV-illuminated face of the cloud (G0 > 500, nH > 5 × 10^3 cm^−3) and from dense PDRs (G0>~10^4, nH>~10^5 cm^−3) at the interface between OMC 1 and the H II region surrounding the Trapezium cluster. Around ~15% of the [C II] emission arises from a different gas component without a CO counterpart. The [C II] excitation, PDR gas turbulence, line opacity (from [13C II]), and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[CII]/LFIR and LFIR/MGas ratios and show that L[CII]/LFIR decreases from the extended cloud component (~10^−2–10^−3) to the more opaque star-forming cores (~10^-3-10−4). The lowest values are reminiscent of the “[C II] deficit” seen in local ultraluminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C II]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C II]-emitting column relative to the total dust column along each line of sight is responsible for the observed L[C II]/LFIR variations through the cloud.
  •  
12.
  • Meixner, Margaret, et al. (författare)
  • Overview of the Origins Space telescope: Science drivers to observatory requirements
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope (OST) mission concept study is the subject of one of the four science and technology definition studies supported by NASA Headquarters to prepare for the 2020 Astronomy and Astrophysics Decadal Survey. OST will survey the most distant galaxies to discern the rise of metals and dust and to unveil the co-evolution of galaxy and blackhole formation, study the Milky Way to follow the path of water from the interstellar medium to habitable worlds in planetary systems, and measure biosignatures from exoplanets. This paper describes the science drivers and how they drove key requirements for OST Mission Concept 2, which will operate between ∼5 and ∼600 microns with a JWST sized telescope. Mission Concept 2 for the OST study optimizes the engineering for the key science cases into a powerful and more economical observatory compared to Mission Concept 1.
  •  
13.
  • Menon, U, et al. (författare)
  • Time intervals and routes to diagnosis for lung cancer in 10 jurisdictions: cross-sectional study findings from the International Cancer Benchmarking Partnership (ICBP)
  • 2019
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 9:11, s. e025895-
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences in time intervals to diagnosis and treatment between jurisdictions may contribute to previously reported differences in stage at diagnosis and survival. The International Cancer Benchmarking Partnership Module 4 reports the first international comparison of routes to diagnosis and time intervals from symptom onset until treatment start for patients with lung cancer.DesignNewly diagnosed patients with lung cancer, their primary care physicians (PCPs) and cancer treatment specialists (CTSs) were surveyed in Victoria (Australia), Manitoba and Ontario (Canada), Northern Ireland, England, Scotland and Wales (UK), Denmark, Norway and Sweden. Using Wales as the reference jurisdiction, the 50th, 75th and 90th percentiles for intervals were compared using quantile regression adjusted for age, gender and comorbidity.ParticipantsConsecutive newly diagnosed patients with lung cancer, aged ≥40 years, diagnosed between October 2012 and March 2015 were identified through cancer registries. Of 10 203 eligible symptomatic patients contacted, 2631 (27.5%) responded and 2143 (21.0%) were included in the analysis. Data were also available from 1211 (56.6%) of their PCPs and 643 (37.0%) of their CTS.Primary and secondary outcome measuresInterval lengths (days; primary), routes to diagnosis and symptoms (secondary).ResultsWith the exception of Denmark (−49 days), in all other jurisdictions, the median adjusted total interval from symptom onset to treatment, for respondents diagnosed in 2012–2015, was similar to that of Wales (116 days). Denmark had shorter median adjusted primary care interval (−11 days) than Wales (20 days); Sweden had shorter (−20) and Manitoba longer (+40) median adjusted diagnostic intervals compared with Wales (45 days). Denmark (−13), Manitoba (−11), England (−9) and Northern Ireland (−4) had shorter median adjusted treatment intervals than Wales (43 days). The differences were greater for the 10% of patients who waited the longest. Based on overall trends, jurisdictions could be grouped into those with trends of reduced, longer and similar intervals to Wales. The proportion of patients diagnosed following presentation to the PCP ranged from 35% to 75%.ConclusionThere are differences between jurisdictions in interval to treatment, which are magnified in patients with lung cancer who wait the longest. The data could help jurisdictions develop more focused lung cancer policy and targeted clinical initiatives. Future analysis will explore if these differences in intervals impact on stage or survival.
  •  
14.
  • Weller, D, et al. (författare)
  • Diagnostic routes and time intervals for patients with colorectal cancer in 10 international jurisdictions; findings from a cross-sectional study from the International Cancer Benchmarking Partnership (ICBP)
  • 2018
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 8:11, s. e023870-
  • Tidskriftsartikel (refereegranskat)abstract
    • International differences in colorectal cancer (CRC) survival and stage at diagnosis have been reported previously. They may be linked to differences in time intervals and routes to diagnosis. The International Cancer Benchmarking Partnership Module 4 (ICBP M4) reports the first international comparison of routes to diagnosis for patients with CRC and the time intervals from symptom onset until the start of treatment. Data came from patients in 10 jurisdictions across six countries (Canada, the UK, Norway, Sweden, Denmark and Australia).DesignPatients with CRC were identified via cancer registries. Data on symptomatic and screened patients were collected; questionnaire data from patients’ primary care physicians and specialists, as well as information from treatment records or databases, supplemented patient data from the questionnaires. Routes to diagnosis and the key time intervals were described, as were between-jurisdiction differences in time intervals, using quantile regression.ParticipantsA total of 14 664 eligible patients with CRC diagnosed between 2013 and 2015 were identified, of which 2866 were included in the analyses.Primary and secondary outcome measuresInterval lengths in days (primary), reported patient symptoms (secondary).ResultsThe main route to diagnosis for patients was symptomatic presentation and the most commonly reported symptom was ‘bleeding/blood in stool’. The median intervals between jurisdictions ranged from: 21 to 49 days (patient); 0 to 12 days (primary care); 27 to 76 days (diagnostic); and 77 to 168 days (total, from first symptom to treatment start). Including screen-detected cases did not significantly alter the overall results.ConclusionICBP M4 demonstrates important differences in time intervals between 10 jurisdictions internationally. The differences may justify efforts to reduce intervals in some jurisdictions.
  •  
15.
  •  
16.
  • Muller, Holger, et al. (författare)
  • Detection of extragalactic argonium, ArH+, toward PKS 1830-211
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 582, s. 4-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Argonium has recently been detected as a ubiquitous molecule in our Galaxy. Model calculations indicate that its abundance peaks at molecular fractions in the range of 10-4 to 10-3 and that the observed column densities require high values of the cosmic ray ionization rate. Therefore, this molecular cation may serve as an excellent tracer of the very diffuse interstellar medium (ISM), as well as an indicator of the cosmic ray ionization rate.Aims. We attempted to detect ArH+ in extragalactic sources to evaluate its diagnostic power as a tracer of the almost purely atomic ISM in distant galaxies.Methods. We obtained ALMA observations of a foreground galaxy at z = 0.89 in the direction of the lensed blazar PKS 1830−211.Results. Two isotopologs of argonium, 36ArH+ and 38ArH+, were detected in absorption along two different lines of sight toward PKS 1830−211, known as the SW and NE images of the background blazar. The argonium absorption is clearly enhanced on the more diffuse line of sight (NE) compared to other molecular species. The isotopic ratio 36Ar/38Ar is 3.46 ± 0.16 toward the SW image, i.e., significantly lower than the solar value of 5.5.Conclusions. Our results demonstrate the suitability of argonium as a tracer of the almost purely atomic, diffuse ISM in high-redshift sources. The evolution of the isotopic ratio with redshift may help to constrain nucleosynthetic scenarios in the early Universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy