SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brandeker A.) srt2:(2015-2019)"

Sökning: WFRF:(Brandeker A.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andreoni, I., et al. (författare)
  • Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (similar to 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
  •  
2.
  • Scandariato, G., et al. (författare)
  • CHEOPS (CHaracterizing ExOPlanets Satellite) Mission
  • 2016
  • Ingår i: Proceedings of Science. - 1824-8039. ; 2016-May
  • Tidskriftsartikel (refereegranskat)abstract
    • The Characterizing ExOPlanet Satellite (CHEOPS) mission was selected in October 2012 by ESA as the first small mission. It will be a ultra-high precision photometer dedicated to the observation of transits of known exoplanets on bright stars, for which the mass has already been measured via ground-based spectroscopic surveys. Its precision will allow the accurate determination of the planetary radii and, by consequence, the planetary bulk density. CHEOPS will also unveil transiting exoplanets of interest for in-depth characterization, a legacy for future instruments suited to the spectroscopic characterization of exoplanetary atmospheres.
  •  
3.
  • Goobar, Ariel, et al. (författare)
  • iPTF16geu : A multiply imaged, gravitationally lensed type Ia supernova
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 356:6335, s. 291-295
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy.
  •  
4.
  • Brandeker, Alexis, et al. (författare)
  • Herschel detects oxygen in the beta Pictoris debris disk
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • The young star beta Pictoris is well known for its dusty debris disk produced through collisional grinding of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star; this gas is likely the result of vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio that is 20x higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent with that previously reported observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher density region in the disk, perhaps in the shape of a clump or a dense torus required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by the Atacama Large Millimeter/submillimeter Array in the disk and that the redistribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution.
  •  
5.
  • Cataldi, Gianni, et al. (författare)
  • ALMA Resolves C i Emission from the β Pictoris Debris Disk
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 861:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The debris disk around β Pictoris is known to contain gas. Previous ALMA observations revealed a CO belt at ∼85 au with a distinct clump, interpreted as a location of enhanced gas production. Photodissociation converts CO into C and O within ∼50 a. We resolve C i emission at 492 GHz using ALMA and study its spatial distribution. C i shows the same clump as seen for CO. This is surprising, as C is expected to quickly spread in azimuth. We derive a low C mass (between 5 ×10-4and 3.1 ×10-3), indicating that gas production started only recently (within ∼5000 a). No evidence is seen for an atomic accretion disk inward of the CO belt, perhaps because the gas did not yet have time to spread radially. The fact that C and CO share the same asymmetry argues against a previously proposed scenario where the clump is due to an outward-migrating planet trapping planetesimals in a resonance, nor can the observations be explained by an eccentric planetesimal belt secularly forced by a planet. Instead, we suggest that the dust and gas disks should be eccentric. Such a configuration, we further speculate, might be produced by a recent tidal disruption event. Assuming that the disrupted body has had a CO mass fraction of 10%, its total mass would be 3 MMoon.
  •  
6.
  • Cataldi, Gianni, et al. (författare)
  • Constraints on the gas content of the Fomalhaut debris belt Can gas-dust interactions explain the belt's morphology?
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The 440 Myr old main-sequence A-star Fomalhaut is surrounded by an eccentric debris belt with sharp edges. This sort of a morphology is usually attributed to planetary perturbations, but the orbit of the only planetary candidate detected so far, Fomalhaut b, is too eccentric to efficiently shape the belt. Alternative models that could account for the morphology without invoking a planet are stellar encounters and gas-dust interactions. Aims. We aim to test the possibility of gas-dust interactions as the origin of the observed morphology by putting upper limits on the total gas content of the Fomalhaut belt. Methods. We derive upper limits on the CII 158 mu m and 01 63 pint emission by using non detections from the Photocletector Array Camera and Spectrometer (PACS) onboard the Herschel Space Observatory. Line fluxes are converted into total gas mass using the non-local thermodynamic equilibrium (non-LTE) code RADEX. We consider two different cases for the elemental abundances of the gas: solar abundances and abundances similar to those observed for the gas in the beta Pictoris debris disc. Results. The gas mass is shown to be below the millimetre dust mass by a factor of at least similar to 3 (for solar abundances) respectively similar to 300 (for beta Pic-like abundances). Conclusions. The lack of gas co-spatial with the dust implies that gas-dust interactions cannot efficiently shape the Fomalhaut debris belt. The morphology is therefore more likely due to a yet unseen planet (Fomalhaut c) or stellar encounters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy