SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Combes F.) srt2:(2020-2024)"

Search: WFRF:(Combes F.) > (2020-2024)

  • Result 1-25 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
3.
  • Audibert, A., et al. (author)
  • Black hole feeding and star formation in NGC 1808
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • We report on Atacama Large Millimeter Array (ALMA) observations of CO(3-2) emission in the Seyfert2/starburst galaxy NGC1808, at a spatial resolution of 4 pc. Our aim is to investigate the morphology and dynamics of the gas inside the central 0.5 kpc and to probe the nuclear feeding and feedback phenomena. We discovered a nuclear spiral of radius 100 = 45 pc. Within it, we found a decoupled circumnuclear disk or molecular torus of a radius of 0:1300 = 6 pc. The HCN(4-3) and HCO+(4-3) and CS(7-6) dense gas line tracers were simultaneously mapped and detected in the nuclear spiral and they present the same misalignment in the molecular torus. At the nucleus, the HCN/HCO+ and HCN/CS ratios indicate the presence of an active galactic nucleus (AGN). The molecular gas shows regular rotation, within a radius of 400 pc, except for the misaligned disk inside the nuclear spiral arms. The computations of the torques exerted on the gas by the barred stellar potential reveal that the gas within a radius of 100 pc is feeding the nucleus on a timescale of five rotations or on an average timescale of 60 Myr. Some non-circular motions are observed towards the center, corresponding to the nuclear spiral arms. We cannot rule out that small extra kinematic perturbations could be interpreted as a weak outflow attributed to AGN feedback. The molecular outflow detected at 250 pc in the NE direction is likely due to supernovae feedback and it is connected to the kpc-scale superwind.
  •  
4.
  • Gorski, Mark, 1989, et al. (author)
  • A spectacular galactic scale magnetohydrodynamic powered wind in ESO 320-G030
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Journal article (peer-reviewed)abstract
    • How galaxies regulate nuclear growth through gas accretion by supermassive black holes (SMBHs) is one of the most fundamental questions in galaxy evolution. One potential way to regulate nuclear growth is through a galactic wind that removes gas from the nucleus. It is unclear whether galactic winds are powered by jets, mechanical winds, radiation, or via magnetohydrodynamic (MHD) processes. Compact obscured nuclei represent a significant phase of galactic nuclear growth. These galaxies hide growing SMBHs or unusual starbursts in their very opaque, extremely compact (r < 100 pc) centres. They are found in approximately 30% of the luminous and ultra-luminous infrared galaxy population. Here, we present high-resolution ALMA observations (∼30 mas, ∼5 pc) of ground-state and vibrationally excited HCN towards ESO 320-G030 (IRAS 11506-3851). ESO 320-G030 is an isolated luminous infrared galaxy known to host a compact obscured nucleus and a kiloparsec-scale molecular wind. Our analysis of these high-resolution observations excludes the possibility of a starburst-driven wind, a mechanically or energy driven active galactic nucleus wind, and exposes a molecular MDH wind. These results imply that the nuclear evolution of galaxies and the growth of SMBHs are similar to the growth of hot cores or protostars where gravitational collapse of the nuclear torus drives a MHD wind. These results mean galaxies are capable, in part, of regulating the evolution of their nuclei without feedback.
  •  
5.
  • Nishimura, Y., et al. (author)
  • CON-quest: II. Spatially and spectrally resolved HCN/HCO + line ratios in local luminous and ultraluminous infrared galaxies
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • Context. Nuclear regions of ultraluminous and luminous infrared galaxies (U/LIRGs) are powered by starbursts and/or active galactic nuclei (AGNs). These regions are often obscured by extremely high columns of gas and dust. Molecular lines in the submillimeter windows have the potential to determine the physical conditions of these compact obscured nuclei (CONs). Aims. We aim to reveal the distributions of HCN and HCO+ emission in local U/LIRGs and investigate whether and how they are related to galaxy properties. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted sensitive observations of the HCN J = 3-2 and HCO+J = 3-2 lines toward 23 U/LIRGs in the local Universe (z < 0.07) with a spatial resolution of ~0.3″ ( ~50-400 pc). Results. We detected both HCN and HCO+ in 21 galaxies, only HCN in one galaxy, and neither in one galaxy. The global HCN/HCO+ line ratios, averaged over scales of ~0.5-4 kpc, range from 0.4 to 2.3, with an unweighted mean of 1.1. These line ratios appear to have no systematic trend with bolometric AGN luminosity or star formation rate. The line ratio varies with position and velocity within each galaxy, with an average interquartile range of 0.38 on a spaxel-by-spaxel basis. In eight out of ten galaxies known to have outflows and/or inflows, we found spatially and kinematically symmetric structures of high line ratios. These structures appear as a collimated bicone in two galaxies and as a thin spherical shell in six galaxies. Conclusions. Non-LTE analysis suggests that the high HCN/HCO+ line ratio in outflows is predominantly influenced by the abundance ratio. Chemical model calculations indicate that the enhancement of HCN abundance in outflows is likely due to high-temperature chemistry triggered by shock heating. These results imply that the HCN/HCO+ line ratio can aid in identifying the outflow geometry when the shock velocity of the outflows is sufficiently high to heat the gas.
  •  
6.
  • Pagnini, G., et al. (author)
  • The distribution of globular clusters in kinematic spaces does not trace the accretion history of the host galaxy
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Journal article (peer-reviewed)abstract
    • Context. Reconstructing how all the stellar components of the Galaxy formed and assembled over time by studying the properties of the stars that form it is the aim of Galactic archaeology. Thanks to the launch of the ESA Gaia astrometric mission and the development of many spectroscopic surveys in recent years, we are for the first time in the position to delve into the layers of the past of the Galaxy. Globular clusters play a fundamental role in this research field since they are among the oldest stellar systems in the MW and thus bear witness to its entire past. Aims. As a natural result of galaxy formation, globular clusters did not necessarily all form in the Galaxy itself. Indeed, a fraction of them could have been formed in satellite galaxies accreted by the Milky Way over time. In recent years, there have been several attempts to constrain the nature of clusters (accreted or formed in the Milky Way itself) through the analysis of kinematic spaces, such as the E - Lz, Lperp - Lz, eccentricity - Lz, and the action space, as well as attempts to reconstruct the properties of the accretion events experienced by the Milky Way through time from this kind of analysis. This work aims to test a widely used assumption about the clustering of the accreted populations of globular clusters in the integrals of motions space. Methods. In this paper we analyse a set of dissipationless N-body simulations that reproduce the accretion of one or two satellites with their globular cluster population on a Milky Way-type galaxy. Results. Our results demonstrate that a significant overlap between accreted and 'kinematically heated' in situ globular clusters is expected in kinematic spaces for mergers with mass ratios of 1:10. In contrast with the standard assumptions made in the literature so far, we find that accreted globular clusters do not show dynamical coherence, that is, they do not cluster in kinematic spaces. In addition, we show that globular clusters can also be found in regions dominated by stars that have a different origin (i.e. a different progenitor). This casts doubt on the association between clusters and field stars that is generally made in the literature and is used to assign them to a common origin. By means of Gaussian mixture models, we demonstrate that the overlap of clusters is not only a projection effect on specific planes but is also found when the whole set of kinematic properties (i.e. E, Lz, Lperp, eccentricity, radial, and vertical actions) is taken into account. Overall, our findings severely question the recovered accretion history of the Milky Way based on the phase-space clustering of the globular cluster population.
  •  
7.
  • Wethers, Clare, 1991, et al. (author)
  • Double, double, toil, and trouble: The tails, bubbles, and knots of the local compact obscured nucleus galaxy NGC 4418
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • Context. Compact obscured nuclei (CONs) are an extremely obscured (NH2>1025 cm-2) class of galaxy nuclei thought to exist in 20-40 per cent of nearby (ultra-)luminous infrared galaxies While they have been proposed to represent a key phase of the active galactic nucleus (AGN) feedback cycle, the nature of these CONs -what powers them, their dynamics, and their impact on the host galaxy -remains unknown. Aims. This work analyses the galaxy-scale optical properties of the local CON NGC 4418 (z=0.00727). The key aims of the study are to understand the impact of nuclear outflows on the host galaxy and infer the power source of its CON. Through the mapping of the galaxy spectra and kinematics, we seek to identify new structures in NGC 4418 to ultimately reveal more about the CON's history, its impact on the host, and, more generally, the role CONs play in galaxy evolution. Methods. We present new, targeted integral field unit observations of the galaxy with the Multi-Unit Spectroscopic Explorer (MUSE). For the first time, we mapped the ionised and neutral gas components of the galaxy, along with their dynamical structure, to reveal several previously unknown features of the galaxy. Results. We confirm the presence of a previously postulated, blueshifted outflow along the minor axis of NGC 4418. We find this outflow to be decelerating and, for the first time, show it to extend in both directions from the nucleus. We report the discovery of two further outflow structures: a redshifted southern outflow connected to a tail of ionised gas surrounding the galaxy and a blueshifted bubble to the north. In addition to these features, we find the [OIII] emission reveals the presence of knots across the galaxy, which are consistent with regions of the galaxy that have been photoionised by an AGN. Conclusions. We identify several new features in NGC 4418, including a bubble structure, a reddened outflow, and [OIII] knot structures throughout the galaxy. We additionally confirm the presence of a bilateral blueshifted outflow along the minor axis. Based on the properties of these features, we conclude that the CON in NGC 4418 is most likely powered by AGN activity.
  •  
8.
  • Aalto, Susanne, 1964, et al. (author)
  • ALMA resolves the remarkable molecular jet and rotating wind in the extremely radio-quiet galaxy NGC 1377
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Journal article (peer-reviewed)abstract
    • Submillimetre and millimetre line and continuum observations are important in probing the morphology, column density, and dynamics of the molecular gas and dust around obscured active galactic nuclei (AGNs) and their mechanical feedback. With very high-resolution (0.'' 02x0.'' 03 (2x3 pc)) ALMA 345 GHz observations of CO 3-2, HCO+ 4-3, vibrationally excited HCN 4-3 nu (2)=1f, and continuum we have studied the remarkable, extremely radio-quiet, molecular jet and wind of the lenticular galaxy NGC 1377. The outflow structure is resolved, revealing a 150 pc long, clumpy, high-velocity (similar to 600 km s(-1)), collimated molecular jet where the molecular emission is emerging from the spine of the jet with an average diameter of 3-7 pc. The jet widens to 10-15 pc about 25 pc from the centre, which is possibly due to jet-wind interactions. A narrow-angle (50 degrees -70 degrees), misaligned and rotating molecular wind surrounds the jet, and both are enveloped by a larger-scale CO-emitting structure at near-systemic velocity. The jet and narrow wind have steep radial gas excitation gradients and appear turbulent with high gas dispersion (sigma> 40 km s(-1)). The jet shows velocity reversals that we propose are caused by precession, or more episodic directional changes. We discuss the mechanisms powering the outflow, and we find that an important process for the molecular jet and narrow wind is likely magneto-centrifugal driving. In contrast, the large-scale CO-envelope may be a slow wind, or cocoon that stems from jet-wind interactions. An asymmetric, nuclear r similar to 2 pc dust structure with a high inferred molecular column density N(H-2) similar or equal to 1.8x10(24) cm(-2) is detected in continuum and also shows compact emission from vibrationally excited HCN. The nuclear dust emission is hot (T-d> 180 K) and its luminosity is likely powered by a buried AGN. The lopsided structure appears to be a warped disk, which is responsible for a significant part of the nuclear obscuration and possibly formed as a result of uneven gas inflows. The dynamical mass inside r=1.4 pc is estimated to 9(-3)(+2) x 10(6)M(circle dot) 9 - 3 + 2 x 10 6 M circle dot , implying that the supermassive black hole (SMBH) has a high mass with respect to the stellar velocity dispersion of NGC 1377. We suggest that the SMBH of NGC 1377 is currently in a state of moderate growth, at the end of a more intense phase of accretion and also evolving from a state of more extreme nuclear obscuration. The nuclear growth may be fuelled by low-angular momentum gas inflowing from the gas ejected in the molecular jet and wind. Such a feedback-loop of cyclic outflows and central accretion could explain why there is still a significant reservoir of molecular gas in this ageing, lenticular galaxy. A feedback-loop would be an effective process in growing the nuclear SMBH and thus would constitute an important phase in the evolution of NGC 1377. This also invites new questions as to SMBH growth processes in obscured, dusty galaxies.
  •  
9.
  • Belete, A. Bewketu, et al. (author)
  • Molecular gas kinematics in the nuclear region of nearby Seyfert galaxies with ALMA
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • Context. The study of the distribution, morphology, and kinematics of cold molecular gas in the nuclear and circumnuclear regions of active galactic nuclei (AGNs) helps to characterise and hence to quantify the impact of the AGNs on the host galaxy over its lifetime. Aims. We present the analysis of the molecular gas in the nuclear regions of three Seyfert galaxies, NGC 4968, NGC 4845, and MCG-06-30-15, using Atacama Large sub-Millimetre Array (ALMA) observations of the CO(2-1) emission line. The aim is to determine the kinematics of the gas in the central (∼1 kpc) region and thereby to probe nuclear fueling and feedback of AGNs. Methods. We used two different softwares, namely the 3D-Based Analysis of Rotating Object via Line Observations and DiskFit, to model the kinematics of the gas in the molecular disc, and thereby to determine the gas rotation and any kinematical perturbations. Results. Circular motions dominate the kinematics of the molecular gas in the central discs, mainly in NGC 4845 and MCG-06-30-15; however there is clear evidence of non-circular motions in the central (∼1 kpc) region of NGC 4845 and NGC 4968. The strongest non-circular motion is detected in the inner disc of NGC 4968, mainly along the minor kinematic axis, with a velocity ∼115 km s-1. Of all DiskFit models, the bisymmetric model is found to give the best fit for NGC 4968 and NGC 4845, indicating that the observed non-circular motions in the inner disc of these galaxies could result from the nuclear barred structure, where the gas streams in elliptical orbits aligned along the bar. If the dynamics of NGC 4968 is modelled as a corotation pattern just outside of the bar, the bar pattern speed becomes ωb = 52 km s-1 kpc-1; the corotation is set at 3.5 kpc; and the inner Lindblad resonance (ILR) ring is R  =  300 pc, corresponding to the CO emission ring. In the NGC 4968 galaxy, the torques exerted on the gas by the bar are positive in the centre, within the gas nuclear ring, and negative outside. This shows that the gas is transiently trapped in the ILR. The comparison of the CO intensity maps with the map of the cold dust emission shows an absence of CO in the centre of NGC 4968; also the dust distribution and CO emission in and around the centre of NGC 4845 have similar extensions. The 1.2 mm ALMA continuum is peaked and compact in NGC 4968 and MCG-06-30-15, but their CO(2-1) emissions have extended distributions. Allowing the CO-to-H2 conversion factor αCO between 0.8 and 3.2, which is typical of nearby galaxies of the same type, the molecular mass M(H2) is estimated to be ∼3  -  12  ×  107  M⊙ (NGC 4968), ∼9  -  36  ×  107  M⊙ (NGC 4845), and ∼1  -  4  ×  107  M⊙ (MCG-06-30-15). Conclusions. We conclude that the observed non-circular motions in the molecular disc of NGC 4968 and likely those seen in NGC 4845 are due to the presence of the bar in the nuclear region. We discuss the possibility that the observed pattern in the kinematics might be a consequence of the presence of AGNs, and this might be the case for NGC 4845. At the current spectral and spatial resolution and sensitivity, we cannot claim any strong evidence in these sources of the long sought feedback or feeding effect resulting from the presence of AGNs.
  •  
10.
  •  
11.
  • Combes, F., et al. (author)
  • PKS 1830-211: OH and HI at z = 0.89 and the first MeerKAT UHF spectrum
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Journal article (peer-reviewed)abstract
    • The Large Survey Project (LSP) "MeerKAT Absorption Line Survey"(MALS) is a blind H I 21 cm and OH 18 cm absorption line survey in the L- and UHF-bands, primarily designed to better determine the occurrence of atomic and molecular gas in the circumgalactic and intergalactic medium, and its redshift evolution. Here we present the first results using the UHF band obtained towards the strongly lensed radio source PKS 1830-211, revealing the detection of absorption produced by the lensing galaxy. With merely 90 min of data acquired on-source for science verification and processed using the Automated Radio Telescope Imaging Pipeline (ARTIP), we detect in absorption the known H I 21 cm and OH 18 cm main lines at z = 0.89 at an unprecedented signal-to-noise ratio (4000 in the continuum, in each 6 km s-1 wide channel). For the first time we report the detection of OH satellite lines at z = 0.89, which until now have not been detected at z > 0.25. We decompose the OH lines into a thermal and a stimulated contribution, where the 1612 and 1720 MHz lines are conjugate. The total OH 1720 MHz emission line luminosity is 6100 L⊙. This is the most luminous known 1720 MHz maser line and is also among the most luminous of the OH main line megamasers. The absorption components of the different images of the background source sample different light paths in the lensing galaxy, and their weights in the total absorption spectrum are expected to vary in time on daily and monthly time scales. We compare our normalized spectra with those obtained more than 20 years ago, and find no variation. We interpret the absorption spectra with the help of a lens galaxy model derived from an N-body hydrodynamical simulation, with a morphology similar to its optical HST image. The resulting absorption lines depend mainly on the background continuum and the radial distribution of the gas surface density for each atomic and molecular species. We show that it is possible to reproduce the observations assuming a realistic spiral galaxy disk without invoking any central gas outflows. However, there are distinct and faint high-velocity features in the ALMA millimeter absorption spectra that most likely originate from high-velocity clouds or tidal features. These clouds may contribute to broaden the H I and OH spectra.
  •  
12.
  • Deka, P. P., et al. (author)
  • The MeerKAT Absorption Line Survey (MALS) Data Release. I. Stokes I Image Catalogs at 1-1.4 GHz
  • 2024
  • In: Astrophysical Journal, Supplement Series. - 1538-4365 .- 0067-0049. ; 270:2
  • Journal article (peer-reviewed)abstract
    • The MeerKAT Absorption Line Survey (MALS) has observed 391 telescope pointings at the L band (900-1670 MHz) at delta less than or similar to +20 degrees. We present radio continuum images and a catalog of 495,325 (240,321) radio sources detected at a signal-to-noise ratio (S/N) > 5 over an area of 2289 deg(2) (1132 deg(2)) at 1006 MHz (1381 MHz). Every MALS pointing contains a central bright radio source (S 1 GHz greater than or similar to 0.2 Jy). The median spatial resolution is 12 ''(8 ''). The median rms noise away from the pointing center is 25 mu Jy beam(-1) (22 mu Jy beam-1) and is within similar to 15% of the achievable theoretical sensitivity. The flux density scale ratio and astrometric accuracy deduced from multiply observed sources in MALS are <1% (8% scatter) and 1 '', respectively. Through comparisons with NVSS and FIRST at 1.4 GHz, we establish the catalog's accuracy in the flux density scale and astrometry to be better than 6% (15% scatter) and 0.'' 8, respectively. The median flux density offset is higher (9%) for an alternate beam model based on holographic measurements. The MALS radio source counts at 1.4 GHz are in agreement with literature. We estimate spectral indices (alpha) of a subset of 125,621 sources (S/N > 8), confirm the flattening of spectral indices with decreasing flux density, and identify 140 ultra-steep-spectrum (alpha < -1.3) sources as prospective high-z radio galaxies (z > 2). We have identified 1308 variable and 122 transient radio sources comprising primarily active galactic nuclei that demonstrate long-term (26 yr) variability in their observed flux densities. The MALS catalogs and images are publicly available at https://mals.iucaa.in.
  •  
13.
  • Falstad, Niklas, 1987, et al. (author)
  • CON-quest: Searching for the most obscured galaxy nuclei
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Journal article (peer-reviewed)abstract
    • Context. Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact (r < 100 pc) and dusty nuclei. The high extinction associated with large column densities of gas and dust toward these objects render them hard to detect at many wavelengths. The intense infrared radiation arising from warm dust in these sources can provide a significant fraction of the bolometric luminosity of the galaxy and is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib); the brightest emission is found in compact obscured nuclei (CONs; ςHCN-vib > 1 L⊙ pc-2 in the J = 3-2 transition). However, there have been no systematic searches for CONs, and it is unknown how common they are. Aims. We aim to establish how common CONs are in the local Universe (z < 0.08), and whether their prevalence depends on the luminosity or other properties of the host galaxy. Methods. We conducted an Atacama Large Millimeter/submillimeter Array survey of the rotational J = 3-2 transition of HCN-vib in a volume-limited sample of 46 far-infrared luminous galaxies. Results. Compact obscured nuclei are identified in 38-13+18% of the ULIRGs, 21-6+12% of the LIRGs, and 0-0+9% of the lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 μm to 60 μm flux density ratios (f25/f60) in CONs (with the exception of one galaxy, NGC 4418) compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7 μm), but similar polycyclic aromatic hydrocarbon equivalent widths (EQW6.2 μm) compared to other galaxies. Along with signatures of molecular inflows seen in the far-infrared in most CONs, submillimeter observations also reveal compact, often collimated, outflows. Conclusions. In the local Universe, CONs are primarily found in (U)LIRGs, in which they are remarkably common. As such systems are often highly disturbed, inclinations are difficult to estimate, and high-resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. Further studies of the in- A nd outflow properties of CONs should also be conducted to investigate how these are connected to each other and to the CON phenomenon. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated (EQW6.2 μm and s9.7 μm) are consistent with the notion that large dust columns gradually shift the radiation from the hot nucleus to longer wavelengths, making the mid- A nd far-infrared "photospheres"significantly cooler than the interior regions. Finally, to assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.
  •  
14.
  • Fernandez-Ontiveros, J. A., et al. (author)
  • A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO420-G13 probes an elusive radio jet*
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633
  • Journal article (peer-reviewed)abstract
    • A prominent jet-driven outflow of CO(2-1) molecular gas is found along the kinematic minor axis of the Seyfert 2 galaxy ESO 420-G13, at a distance of 340-600 pc from the nucleus. The wind morphology resembles the characteristic funnel shape, formed by a highly collimated filamentary emission at the base, and likely traces the jet propagation through a tenuous medium, until a bifurcation point at 440 pc. Here the jet hits a dense molecular core and shatters, dispersing the molecular gas into several clumps and filaments within the expansion cone. We also trace the jet in ionised gas within the inner less than or similar to 340 pc using the [NeII](12.8 mu m) line emission, where the molecular gas follows a circular rotation pattern. The wind outflow carries a mass of similar to 8 x 10(6) M-circle dot at an average wind projected speed of similar to 160 km s(-1), which implies a mass outflow rate of similar to 14 M-circle dot yr(-1). Based on the structure of the outflow and the budget of energy and momentum, we discard radiation pressure from the active nucleus, star formation, and supernovae as possible launching mechanisms. ESO 420-G13 is the second case after NGC 1377 where a previously unknown jet is revealed through its interaction with the interstellar medium, suggesting that unknown jets in feeble radio nuclei might be more common than expected. Two possible jet-cloud configurations are discussed to explain an outflow at this distance from the AGN. The outflowing gas will likely not escape, thus a delay in the star formation rather than quenching is expected from this interaction, while the feedback effect would be confined within the central few hundred parsecs of the galaxy.
  •  
15.
  •  
16.
  •  
17.
  • Grasselli, Giacomo, et al. (author)
  • ESICM guidelines on acute respiratory distress syndrome : definition, phenotyping and respiratory support strategies
  • 2023
  • In: Intensive Care Medicine. - : Springer Nature. - 0342-4642 .- 1432-1238. ; 49, s. 727-759
  • Journal article (peer-reviewed)abstract
    • The aim of these guidelines is to update the 2017 clinical practice guideline (CPG) of the European Society of Intensive Care Medicine (ESICM). The scope of this CPG is limited to adult patients and to non-pharmacological respiratory support strategies across different aspects of acute respiratory distress syndrome (ARDS), including ARDS due to coronavirus disease 2019 (COVID-19). These guidelines were formulated by an international panel of clinical experts, one methodologist and patients' representatives on behalf of the ESICM. The review was conducted in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement recommendations. We followed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the certainty of evidence and grade recommendations and the quality of reporting of each study based on the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) network guidelines. The CPG addressed 21 questions and formulates 21 recommendations on the following domains: (1) definition; (2) phenotyping, and respiratory support strategies including (3) high-flow nasal cannula oxygen (HFNO); (4) non-invasive ventilation (NIV); (5) tidal volume setting; (6) positive end-expiratory pressure (PEEP) and recruitment maneuvers (RM); (7) prone positioning; (8) neuromuscular blockade, and (9) extracorporeal life support (ECLS). In addition, the CPG includes expert opinion on clinical practice and identifies the areas of future research.
  •  
18.
  • Hartley, Philippa, et al. (author)
  • SKA Science Data Challenge 2: analysis and results
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 1967-1993
  • Journal article (peer-reviewed)abstract
    • The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application of advanced analysis techniques to extract key science findings. To this end, SKAO is conducting a series of Science Data Challenges, each designed to familiarize the scientific community with SKAO data and to drive the development of new analysis techniques. We present the results from Science Data Challenge 2 (SDC2), which invited participants to find and characterize 233 245 neutral hydrogen (H i) sources in a simulated data product representing a 2000 h SKA-Mid spectral line observation from redshifts 0.25-0.5. Through the generous support of eight international supercomputing facilities, participants were able to undertake the Challenge using dedicated computational resources. Alongside the main challenge, 'reproducibility awards' were made in recognition of those pipelines which demonstrated Open Science best practice. The Challenge saw over 100 participants develop a range of new and existing techniques, with results that highlight the strengths of multidisciplinary and collaborative effort. The winning strategy - which combined predictions from two independent machine learning techniques to yield a 20 per cent improvement in overall performance - underscores one of the main Challenge outcomes: that of method complementarity. It is likely that the combination of methods in a so-called ensemble approach will be key to exploiting very large astronomical data sets.
  •  
19.
  •  
20.
  •  
21.
  • Muller, Sebastien, 1976, et al. (author)
  • Detection of deuterated molecules, but not of lithium hydride, in the z=0.89 absorber toward PKS 1830-211
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Journal article (peer-reviewed)abstract
    • Deuterium and lithium are light elements of high cosmological and astrophysical importance. In this work we report the first detection of deuterated molecules and a search for lithium hydride, (LiH)-Li-7, at redshift z=0.89 in the spiral galaxy intercepting the line of sight to the quasar PKS 1830-211. We used ALMA to observe several submillimeter lines of ND, NH2D, and HDO, and their related isotopomers NH2, NH3, and (H2O)-O-18 H 2 18 O , in absorption against the southwest image of the quasar, allowing us to derive XD/XH abundance ratios. The absorption spectra mainly consist of two distinct narrow velocity components for which we find remarkable differences. One velocity component shows XD/XH abundances that is about 10 times larger than the primordial elemental D/H ratio, and no variability of the absorption profile during the time span of our observations. In contrast, the other component shows a stronger deuterium fractionation. Compared to the first component, this second component has XD/XH abundances that are 100 times larger than the primordial D/H ratio, a deepening of the absorption by a factor of two within a few months, and a rich chemical composition, with relative enhancements of N2H+, CH3OH, SO2 and complex organic molecules. We therefore speculate that this component is associated with the analog of a Galactic dark cloud, while the first component is likely more diffuse. Our search for the (LiH)-Li-7 (1-0) line was unsuccessful and we derive an upper limit (LiH)-Li-7/H-2 = 4x10(-13) (3 sigma) in the z=0.89 absorber toward PKS 1830-211. Besides, with ALMA archival data, we could not confirm the previous tentative detections of this line in the z=0.68 absorber toward B 0218+357; we derive an upper limit (LiH)-Li-7/H-2 = 5x10(-11) (3 sigma), although this is less constraining than our limit toward PKS 1830-211. We conclude that, as in the Milky Way, only a tiny fraction of lithium nuclei are possibly bound in LiH in these absorbers at intermediate redshift.
  •  
22.
  • Muller, Sebastien, 1976, et al. (author)
  • Protonated acetylene in the z = 0.89 molecular absorber toward PKS 1830-211
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • We report the first interstellar identification of protonated acetylene, C2H3+, a fundamental hydrocarbon, in the z = 0.89 molecular absorber toward the gravitationally lensed quasar PKS 1830-211. The molecular species is identified from clear absorption features corresponding to the 212-101 (rest frequency 494.034 GHz) and 111-000 (431.316 GHz) ground-state transitions of ortho and para forms of C2H3+, respectively, in ALMA spectra toward the southwestern image of PKS 1830-211, where numerous molecules, including other hydrocarbons, have already been detected. From the simple assumption of local thermodynamic equilibrium (LTE) with cosmic microwave background photons and an ortho-to-para ratio of three, we estimate a total C2H3+ column density of 2 × 1012 cm-2 and an abundance of 10-10 compared to H2. However, formation pumping could affect the population of metastable states, yielding a C2H3+ column density higher than the LTE value by a factor of a few. We explore possible routes to the formation of C2H3+, mainly connected to acetylene and methane, and find that the methane route is more likely in PDR environment. As one of the initial hydrocarbon building blocks, C2H3+ is thought to play an important role in astrochemistry, in particular in the formation of more complex organic molecules.
  •  
23.
  •  
24.
  • Pereira-Santaella, M., et al. (author)
  • Physics of ULIRGs with MUSE and ALMA: The PUMA project: II. Are local ULIRGs powered by AGN: The subkiloparsec view of the 220 GHz continuum
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Journal article (peer-reviewed)abstract
    • We analyze new high-resolution (400 pc) ∼220 GHz continuum and CO(2-1) Atacama Large Millimeter Array (ALMA) observations of a representative sample of 23 local (z < 0.165) ultra-luminous infrared systems (ULIRGs; 34 individual nuclei) as part of the "Physics of ULIRGs with MUSE and ALMA"(PUMA) project. The deconvolved half-light radii of the ∼220 GHz continuum sources, rcont, are between < 60 pc and 350 pc (median 80-100 pc). We associate these regions with the regions emitting the bulk of the infrared luminosity (LIR). The good agreement, within a factor of 2, between the observed ∼220 GHz fluxes and the extrapolation of the infrared gray-body as well as the small contributions from synchrotron and free-free emission support this assumption. The cold molecular gas emission sizes, rCO, are between 60 and 700 pc and are similar in advanced mergers and early interacting systems. On average, rCO are ∼2.5 times larger than rcont. Using these measurements, we derived the nuclear LIR and cold molecular gas surface densities (ςLIR = 1011.5-1014.3 L· kpc-2 and ςH2 = 102.9-104.2 M· pc-2, respectively). Assuming that the LIR is produced by star formation, the median ςLIR corresponds to ςSFR = 2500 M· yr-1 kpc-2. This ςSFR implies extremely short depletion times, ςH2/ςSFR < 1-15 Myr, and unphysical star formation efficiencies > 1 for 70% of the sample. Therefore, this favors the presence of an obscured active galactic nucleus (AGN) in these objects that could dominate the LIR. We also classify the ULIRG nuclei in two groups: (a) compact nuclei (rcont < 120 pc) with high mid-infrared excess emission (ΔL6-20 μm/LIR) found in optically classified AGN; and (b) nuclei following a relation with decreasing ΔL6-20 μm/LIR for decreasing rcont. The majority, 60%, of the nuclei in interacting systems lie in the low-rcont end (<120 pc) of this relation, while this is the case for only 30% of the mergers. This suggests that in the early stages of the interaction, the activity occurs in a very compact and dust-obscured region while, in more advanced merger stages, the activity is more extended, unless an optically detected AGN is present. Approximately two-thirds of the nuclei have nuclear radiation pressures above the Eddington limit. This is consistent with the ubiquitous detection of massive outflows in local ULIRGs and supports the importance of the radiation pressure in the outflow launching process.
  •  
25.
  • Scourfield, M., et al. (author)
  • ALMA observations of CS in NGC 1068: chemistry and excitation
  • 2020
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:4, s. 5308-5329
  • Journal article (peer-reviewed)abstract
    • We present results from Atacama Large Millimeter/submillimeter Array (ALMA) observations of CS from the nearby galaxy NGC 1068 (similar to 14 Mpc). This Seyfert 2 barred galaxy possesses a circumnuclear disc (CND, r similar to 200 pc) and a starburst ring (SB ring, r similar to 1.3 kpc). These high-resolution maps (similar to 0.5 arcsec, similar to 35 pc) allow us to analyse specific sub-regions in the galaxy and investigate differences in line intensity ratios and physical conditions, particularly those between the CND and SB ring. Local thermodynamic equilibrium (LTE) analysis of the gas is used to calculate CS densities in each sub-region, followed by the non-LTE analysis conducted using the radiative transfer code RADEX to fit observations and constrain gas temperature, CS column density and hydrogen density. Finally, the chemical code UCLCHEM is used to reconstruct the gas, allowing an insight into its origin and chemical history. The density of hydrogen in the CND is found to be >= 10(5) cm(-2), although exact values vary, reaching 10(6) cm(-2) at the active galactic nucleus. The conditions in the two arms of the SB ring appear similar to one another, though the density found (similar to 10(4) cm(-2)) is lower than in the CND. The temperature in the CND increases from east to west, and is also overall greater than found in the SB ring. These modelling methods indicate the requirement for multiphase gas components in order to fit the observed emission over the galaxy. A larger number of high-resolution transitions across the SLED may allow for further constraining of the conditions, particularly in the SB ring.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view