SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Davies Melvyn B) srt2:(2010-2014)"

Sökning: WFRF:(Davies Melvyn B) > (2010-2014)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rauer, H., et al. (författare)
  • The PLATO 2.0 mission
  • 2014
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Tidskriftsartikel (refereegranskat)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
2.
  • Kouwenhoven, M. B. N., et al. (författare)
  • The formation of very wide binaries during the star cluster dissolution phase
  • 2010
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 404:4, s. 1835-1848
  • Forskningsöversikt (refereegranskat)abstract
    • Over the past few decades, numerous wide (> 103 au) binaries in the Galactic field and halo have been discovered. Their existence cannot be explained by the process of star formation or by dynamical interactions in the field, and their origin has long been a mystery. We explain the origin of these wide binaries by formation during the dissolution phase of young star clusters: an initially unbound pair of stars may form a binary when their distance in phase space is small. Using N-body simulations, we find that the resulting wide binary fraction in the semimajor axis range 103 au < a < 0.1 pc for individual clusters is 1-30 per cent, depending on the initial conditions. The existence of numerous wide binaries in the field is consistent with observational evidence that most clusters start out with a large degree of substructure. The wide binary fraction decreases strongly with increasing cluster mass, and the semimajor axis of the newly formed binaries is determined by the initial cluster size. The resulting eccentricity distribution is thermal, and the mass ratio distribution is consistent with gravitationally focused random pairing. As a large fraction of the stars forms in primordial binaries, we predict that a large number of the observed 'wide binaries' are in fact triple or quadruple systems. By integrating over the initial cluster mass distribution, we predict a binary fraction of a few per cent in the semimajor axis range 103 au < a < 0.1 pc in the Galactic field, which is smaller than the observed wide binary fraction. However, this discrepancy may be solved when we consider a broad range of cluster morphologies.
  •  
3.
  • Milone, A. P., et al. (författare)
  • The ACS survey of Galactic globular clusters XII. Photometric binaries along the main sequence
  • 2012
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 540
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The fraction of binary stars is an important ingredient to interpret globular cluster dynamical evolution and their stellar population. Aims. We investigate the properties of main-sequence binaries measured in a uniform photometric sample of 59 Galactic globular clusters that were observed by HST WFC/ACS as a part of the Globular Cluster Treasury project. Methods. We measured the fraction of binaries and the distribution of mass-ratio as a function of radial location within the cluster, from the central core to beyond the half-mass radius. We studied the radial distribution of binary stars, and the distribution of stellar mass ratios. We investigated monovariate relations between the fraction of binaries and the main parameters of their host clusters. Results. We found that in nearly all the clusters, the total fraction of binaries is significantly smaller than the fraction of binaries in the field, with a few exceptions only. Binary stars are significantly more centrally concentrated than single MS stars in most of the clusters studied in this paper. The distribution of the mass ratio is generally flat (for mass-ratio parameter q > 0.5). We found a significant anti-correlation between the binary fraction in a cluster and its absolute luminosity (mass). Some, less significant correlation with the collisional parameter, the central stellar density, and the central velocity dispersion are present. There is no statistically significant relation between the binary fraction and other cluster parameters. We confirm the correlation between the binary fraction and the fraction of blue stragglers in the cluster.
  •  
4.
  • Axelsson, Magnus, et al. (författare)
  • On the origin of black hole spin in high-mass black hole binaries : Cygnus X-1
  • 2011
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 412:4, s. 2260-2264
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, there have been several detections of high-mass black hole binaries in both the Milky Way and other galaxies. For some of these, the spin parameter of the black hole has been estimated. As many of these systems are quite tight, a suggested origin of the spin is angular momentum imparted by the synchronous rotation of the black hole progenitor with its binary companion. Using Cygnus X-1, the best studied high-mass black hole binary, we investigate this possibility. We find that such an origin of the spin is not likely, and our results point rather to the spin being the result of processes during the collapse.
  •  
5.
  • Bobrick, Alexey, et al. (författare)
  • Mass transfer in compact binaries
  • 2012
  • Ingår i: Mass transfer in compact binaries.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Church, Ross, et al. (författare)
  • Implications for the origin of short gamma-ray bursts from their observed positions around their host galaxies
  • 2011
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 413:3, s. 2004-2014
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the observed offsets of short-duration gamma-ray bursts (SGRBs) from their putative host galaxies and compare them with the expected distributions of merging compact object binaries, given the observed properties of the hosts. We find that for all but one burst in our sample the offsets are consistent with this model. For the case of bursts with massive elliptical host galaxies, the circular velocities of the hosts' haloes exceed the natal velocities of almost all our compact object binaries. Hence, the extents of the predicted offset distributions for elliptical galaxies are determined largely by their spatial extents. In contrast, for spiral hosts, the galactic rotation velocities are smaller than typical binary natal velocities and the predicted burst offset distributions are more extended than the galaxies. One SGRB, 060502B, apparently has a large radial offset that is inconsistent with an origin in a merging galactic compact binary. Although it is plausible that the host of GRB 060502B is misidentified, our results show that the large offset is compatible with a scenario where at least a few per cent of SGRBs are created by the merger of compact binaries that form dynamically in globular clusters.
  •  
7.
  • Church, Ross, et al. (författare)
  • Interacting Compact Binaries: Modeling Mass Transfer in Eccentric Systems
  • 2012
  • Ingår i: Advances in Computational Astrophysics: methods, tools, and outcomes. - 9781583817889 ; 453, s. 175-178
  • Konferensbidrag (refereegranskat)abstract
    • We discuss mass transfer in eccentric binaries containing a white dwarf and a neutron star (WD-NS binaries). We show that such binaries are produced from field binaries following a series of mass transfer episodes that allow the white dwarf to form before the neutron star. We predict the orbital properties of binaries similar to the observed WD-NS binary J1141+6545, and show that they will undergo episodic mass transfer from the white dwarf to the neutron star. Furthermore, we describe oil-on-water, a two-phase SPH formalism that we have developed in order to model mass transfer in such binaries.
  •  
8.
  • Church, Ross, et al. (författare)
  • Properties of long gamma-ray bursts from massive compact binaries.
  • 2013
  • Ingår i: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science. - : The Royal Society. - 1364-503X .- 1471-2962. ; 371:1992
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider the implications of a model for long-duration gamma-ray bursts in which the progenitor is spun up in a close binary by tidal interactions with a massive black-hole companion. We investigate a sample of such binaries produced by a binary population synthesis, and show that the model predicts several common features in the accretion on to the newly formed black hole. In all cases, the accretion rate declines as approximately t(-5/3) until a break at a time of order 10(4) s. The accretion rate declines steeply thereafter. Subsequently, there is flaring activity, with the flare peaking between 10(4) and 10(5) s, the peak time being correlated with the flare energy. We show that these times are set by the semi-major axis of the binary, and hence the process of tidal spin-up; furthermore, they are consistent with flares seen in the X-ray light curves of some long gamma-ray bursts.
  •  
9.
  • Church, Ross, et al. (författare)
  • The properties of long gamma-ray bursts in massive compact binaries
  • 2012
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 425:1, s. 470-476
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider a popular model for long-duration gamma-ray bursts, in which the progenitor star, a stripped helium core, is spun up by tidal interactions with a black hole companion in a compact binary. We perform population synthesis calculations to produce a representative sample of such binaries, and model the effect that the companion has on material that falls back on to the newly formed black hole. Taking the results of hydrodynamic models of black hole formation by fallback as our starting point, we show that the companion has two principal effects on the fallback process. First, a break forms in the accretion curve at around 104?s. Secondly, subsequent to the break, we expect to see a flare of total energy around 1050?erg. We show that the break and flare times are set largely by the semimajor axis of the binary at the time of explosion, and that this correlates negatively with the flare energy. Although comparison with observations is non-trivial, we show that our predicted break times are comparable to those found in the X-ray light curves of canonical long-duration gamma-ray bursts. Similarly, the flare properties that we predict are consistent with the late-time flares observed in a subsample of bursts.
  •  
10.
  • Davies, Melvyn B, et al. (författare)
  • Compact binaries, hypernovae, and GRBs
  • 2010
  • Ingår i: New Astronomy Reviews. - : Elsevier BV. - 1872-9630 .- 1387-6473. ; 54:3-6, s. 181-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The collapse of a massive stellar core may lead to the production of a black hole surrounded by a torus of material. Such a system is a potential source for the so-called long gamma-ray bursts (GRBs). A torus will form around the black hole if the infalling material contains sufficient angular momentum. This however requires that the core of the massive star rotates extremely rapidly prior to collapse. Here we explore whether tidal locking within binaries can spin stars up sufficiently. We show that the binaries are required to have separations <= 3-4 R-circle dot, hence the massive star would have lost its outer envelope (for example in a common envelope phase). In addition, the companions to the massive stars must themselves be compact. Comparison with observed tight binaries, which contain either two neutron stars or a neutron star and a white dwarf, shows that angular momentum is likely to have played an important role during the core collapse of the secondary in about half the systems, including the recently-discovered neutron star binary J0737-3039. Even if these systems failed to produce a GRB, as they do not contain a black hole, they are relevant to the problem of GRB production as a very similar evolutionary pathway (but with a slightly more massive helium star core) may well produce a GRB. (C) 2010 Elsevier B.V. All rights reserved.
  •  
11.
  • Davies, Melvyn B, et al. (författare)
  • Supermassive Black Hole Formation Via Gas Accretion in Nuclear Stellar Clusters
  • 2011
  • Ingår i: Astrophysical Journal Letters. - 2041-8213. ; 740:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Black holes exceeding a billion solar masses have been detected at redshifts greater than six. The rapid formation of these objects may suggest a massive early seed or a period of growth faster than Eddington. Here we suggest a new mechanism along these lines. We propose that in the process of hierarchical structure assembly, dense star clusters can be contracted on dynamical timescales due to the nearly free-fall inflow of self-gravitating gas with a mass comparable to or larger than that of the clusters. This process increases the velocity dispersion to the point where the few remaining hard binaries can no longer effectively heat the cluster, and the cluster goes into a period of homologous core collapse. The cluster core can then reach a central density high enough for fast mergers of stellar-mass black holes and hence the rapid production of a black hole seed that could be 10(5) M-circle dot or larger.
  •  
12.
  • Davies, Melvyn B, et al. (författare)
  • The Impact of Stellar Collisions in the Galactic Center
  • 2011
  • Ingår i: The Galactic Center: A Window on the Nuclear Environment of Disk Galaxies. - 9781583817582 ; 439, s. 212-221
  • Konferensbidrag (refereegranskat)abstract
    • We consider whether stellar collisions can explain the observed depletion of red giants in the Galactic center. We model the stellar population with two different IMFs: 1) the Miller-Scalo and 2) a much flatter IMF. In the former case, low-mass main-sequence stars dominate the population, and collisions are unable to remove red giants out to 0.4 pc although brighter red giants much closer in may be depleted via collisions with stellar-mass black holes. For a much flatter IMF, the stellar population is dominated by compact remnants (i.e. black holes, white dwarfs and neutron stars). The most common collisions are then those between main-sequence stars and compact remnants. Such encounters are likely to destroy the main-sequence stars and thus prevent their evolution into red giants. In this way, the red-giant population could be depleted out to 0.4 pc matching observations. If this is the case, it implies the Galactic center contains a much larger population of stellar-mass black holes than would be expected from a regular IMF. This may in turn have implications for the formation and growth of the central supermassive black hole.
  •  
13.
  • Johansen, Anders, et al. (författare)
  • Can planetary instability explain the Kepler dichotomy?
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 758:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The planet candidates discovered by the Kepler mission provide a rich sample to constrain the architectures and relative inclinations of planetary systems within approximately 0.5 AU of their host stars. We use the triple-transit systems from the Kepler 16 months data as templates for physical triple-planet systems and perform synthetic transit observations, varying the internal inclination variation of the orbits. We find that all the Kepler triple-transit and double-transit systems can be produced from the triple-planet templates, given a low mutual inclination of around 5 degrees. Our analysis shows that the Kepler data contain a population of planets larger than four Earth radii in single-transit systems that cannot arise from the triple-planet templates. We explore the hypothesis that high-mass counterparts of the triple-transit systems underwent dynamical instability to produce a population of massive double-planet systems of moderately high mutual inclination. We perform N-body simulations of mass-boosted triple-planet systems and observe how the systems heat up and lose planets by planet-planet collisions, and less frequently by ejections or collisions with the star, yielding transits in agreement with the large planets in the Kepler single-transit systems. The resulting population of massive double-planet systems nevertheless cannot explain the additional excess of low-mass planets among the observed single-transit systems and the lack of gas-giant planets in double-transit and triple-transit systems. Planetary instability of systems of triple gas-giant planets can be behind part of the dichotomy between systems hosting one or more small planets and those hosting a single giant planet. The main part of the dichotomy, however, is more likely to have arisen already during planet formation when the formation, migration, or scattering of a massive planet, triggered above a threshold metallicity, suppressed the formation of other planets in sub-AU orbits.
  •  
14.
  • Lucas, W. E., et al. (författare)
  • Misaligned streamers around a Galactic Centre black hole from a single cloud's infall
  • 2013
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 433:1, s. 353-365
  • Tidskriftsartikel (refereegranskat)abstract
    • We follow the near radial infall of a prolate cloud on to a 4 x 10(6) M-circle dot supermassive black hole in the Galactic Centre using smoothed particle hydrodynamics. We show that a prolate cloud oriented perpendicular to its orbital plane naturally produces a spread in angular momenta in the gas which can translate into misaligned discs as is seen in the young stars orbiting Sagittarius A*. A turbulent or otherwise highly structured cloud is necessary to avoid cancelling too much angular momentum through shocks at closest approach. Our standard model of a 2 x 10(4) M-circle dot gas cloud brought about the formation of a disc within 0.3 pc from the black hole and a larger, misaligned streamer at 0.5 pc. A total of 1.5 x 10(4) M-circle dot of gas formed these structures. Our exploration of the simulation parameter space showed that when star formation occurred, it resulted in top-heavy initial mass functions with stars on eccentric orbits with semi-major axes 0.02-0.3 pc and inclinations following the gas discs and streamers. We suggest that the single event of an infalling prolate cloud can explain the occurrence of multiple misaligned discs of young stars.
  •  
15.
  • Lyman, J. D., et al. (författare)
  • The progenitors of calcium-rich transients are not formed in situ
  • 2014
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 444:3, s. 2157-2166
  • Tidskriftsartikel (refereegranskat)abstract
    • We present deep Very Large Telescope and Hubble Space Telescope observations of the nearest examples of Ca-rich 'gap' transients - rapidly evolving transient events, with a luminosity intermediate between novae and supernovae. These sources are frequently found at large galactocentric offsets, and their progenitors remain mysterious. Our observations find no convincing underlying quiescent sources coincident with the locations of these transients, allowing us to rule out a number of potential progenitor systems. The presence of surviving massive-star binary companions (or other cluster members) is ruled out, providing an independent rejection of a massive star origin for these events. Dwarf satellite galaxies are disfavoured unless one invokes as yet unknown conditions that would be extremely favourable for their production in the lowest mass systems. Our limits also probe the majority of the globular cluster luminosity function, ruling out the presence of an underlying globular cluster population at high significance, and thus the possibility that they are created via dynamical interactions in dense globular cluster cores. Given the lack of underlying systems, previous progenitor suggestions have difficulty reproducing the remote locations of these transients, even when considering solely halo-borne progenitors. Our preferred scenario is that Ca-rich transients are high-velocity, kicked systems, exploding at large distances from their natal site. Coupled with a long-lived progenitor system post-kick, this naturally explains the lack of association these transients have with their host stellar light, and the extreme host-offsets exhibited. Neutron star-white dwarf mergers may be a promising progenitor system in this scenario.
  •  
16.
  • Malmberg, Daniel, et al. (författare)
  • Making Extrasolar Planets From Solar Systems Via Dynamical Interactions
  • 2010
  • Ingår i: Extrasolar Planets In Multi-Body Systems: Theory And Observations. - : EDP Sciences. - 1633-4760 .- 1638-1963. ; 42, s. 375-383
  • Konferensbidrag (refereegranskat)abstract
    • Most stars form in some sort of stellar cluster or association. In such environments the number density of stars is much higher than in the solar neighbourhood, which means that close encounters between stars may be relatively common. Using numerical simulations we quantify the fraction of single stars in the solar neighbourhood that have never suffered a close encounter or been part of a binary system. We call such stars singletons. Furthermore, we study what would happen to a solar-system-like planetary system if its host star was exchanged into a binary system during an exchange encounter in a young stellar cluster. The perturbation of the companion star might in such a system trigger strong planet-planet scatterings. This would subsequently lead to the ejection of one or more planets, leaving those remaining on tighter and more eccentric orbits. We find that only if the gas giants in solar-system-like planetary systems most often have rather similar masses does the resulting eccentricity distribution resemble that of the observed extrasolar planets.
  •  
17.
  • Malmberg, Daniel, et al. (författare)
  • The effects of fly-bys on planetary systems
  • 2011
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 411:2, s. 859-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the observed extrasolar planets are found on tight and often eccentric orbits. The high eccentricities are not easily explained by planet-formation models, which predict that planets should be on rather circular orbits. Here we explore whether fly-bys involving planetary systems with properties similar to those of the gas giants in the Solar system can produce planets with properties similar to the observed planets. Using numerical simulations, we show that fly-bys can cause the immediate ejection of planets, and sometimes also lead to the capture of one or more planets by the intruder. More common, however, is that fly-bys only perturb the orbits of planets, sometimes leaving the system in an unstable state. Over time-scales of a few million to several hundred million years after the fly-by, this perturbation can trigger planet-planet scatterings, leading to the ejection of one or more planets. For example, in the case of the four gas giants of the Solar system, the fraction of systems from which at least one planet is ejected more than doubles in 108 yr after the fly-by. The remaining planets are often left on more eccentric orbits, similar to the eccentricities of the observed extrasolar planets. We combine our results of how fly-bys affect Solar-system-like planetary systems, with the rate at which encounters in young stellar clusters occur. For example, we measure the effects of fly-bys on the four gas giants in the Solar system. We find, that for such systems, between 5 and 15 per cent suffer ejections of planets in 108 yr after fly-bys in typical open clusters. Thus, encounters in young stellar clusters can significantly alter the properties of any planets orbiting stars in clusters. As a large fraction of stars which populate the solar neighbourhood form in stellar clusters, encounters can significantly affect the properties of the observed extrasolar planets.
  •  
18.
  • Miller, M. Coleman, et al. (författare)
  • AN UPPER LIMIT TO THE VELOCITY DISPERSION OF RELAXED STELLAR SYSTEMS WITHOUT MASSIVE BLACK HOLES
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 755:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive black holes have been discovered in all closely examined galaxies with high velocity dispersion. The case is not as clear for lower-dispersion systems such as low-mass galaxies and globular clusters. Here we suggest that above a critical velocity dispersion similar to 40 km s(-1), massive central black holes will form in relaxed stellar systems at any cosmic epoch. This is because above this dispersion primordial binaries cannot support the system against deep core collapse. If, as previous simulations show, the black holes formed in the cluster settle to produce a dense subcluster, then given the extremely high densities reached during core collapse the holes will merge with each other. For low velocity dispersions and hence low cluster escape speeds, mergers will typically kick out all or all but one of the holes due to three-body kicks or the asymmetric emission of gravitational radiation. If one hole remains, it will tidally disrupt stars at a high rate. If none remain, one is formed after runaway collisions between stars, and then it tidally disrupts stars at a high rate. The accretion rate after disruption is many orders of magnitude above Eddington. If, as several studies suggest, the hole can accept matter at that rate because the generated radiation is trapped and advected, then it will grow quickly and form a massive central black hole.
  •  
19.
  • Parker, Richard J., et al. (författare)
  • Supernova enrichment and dynamical histories of solar-type stars in clusters
  • 2014
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 437:1, s. 946-958
  • Tidskriftsartikel (refereegranskat)abstract
    • We use N-body simulations of star cluster evolution to explore the hypothesis that short-lived radioactive isotopes found in meteorites, such as Al-26, were delivered to the Sun's protoplanetary disc from a supernova at the epoch of Solar system formation. We cover a range of star cluster formation parameter space and model both clusters with primordial substructure and those with smooth profiles. We also adopt different initial virial ratios - from cool, collapsing clusters to warm, expanding associations. In each cluster, we place the same stellar population; the clusters each have 2100 stars and contain one massive 25 M-circle dot star which is expected to explode as a supernova at about 6.6Myr. We determine the number of solar (G)-type stars that are within 0.1-0.3 pc of the 25 M-circle dot star at the time of the supernova, which is the distance required to enrich the protoplanetary disc with the 26Al abundances found in meteorites. We then determine how many of these G-dwarfs are unperturbed 'singletons'; stars which are never in close binaries, nor suffer sub-100 au encounters, and which also do not suffer strong dynamical perturbations. The evolution of a suite of 20 initially identical clusters is highly stochastic, with the supernova enriching over 10 G-dwarfs in some clusters, and none at all in others. Typically, only similar to 25 per cent of clusters contain enriched, unperturbed singletons, and usually only one to two per cluster (from a total of 96 G-dwarfs in each cluster). The initial conditions for star formation do not strongly affect the results, although a higher fraction of supervirial (expanding) clusters would contain enriched G-dwarfs if the supernova occurred earlier than 6.6Myr. If we sum together simulations with identical initial conditions, then similar to 1 per cent of all G-dwarfs in our simulations are enriched, unperturbed singletons.
  •  
20.
  • Repetto, Serena, et al. (författare)
  • Investigating stellar-mass black hole kicks
  • 2012
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 425:4, s. 2799-2809
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate whether stellar-mass black holes have to receive natal kicks in order to explain the observed distribution of low-mass X-ray binaries containing black holes within our Galaxy. Such binaries are the product of binary evolution, where the massive primary has exploded forming a stellar-mass black hole, probably after a common envelope phase where the system contracted down to separations of the order of 10-30 R-circle dot. We perform population synthesis calculations of these binaries, applying both kicks due to supernova mass-loss and natal kicks due to the newly formed black hole. We then integrate the trajectories of the binary systems within the Galactic potential. We find that natal kicks are in fact necessary to reach the large distances above the Galactic plane achieved by some binaries. Further, we find that the distribution of natal kicks would seem to be similar to that of neutron stars, rather than one where the kick velocities are reduced by the ratio of black hole to neutron star mass (i.e. where the kicks have the same momentum). This result is somewhat surprising; in many pictures of stellar-mass black hole formation, one might have expected black holes to receive kicks having the same momentum (rather than the same speed) as those given to neutron stars.
  •  
21.
  • Schmitz, Birger, et al. (författare)
  • A fossil winonaite-like meteorite in Ordovician limestone: A piece of the impactor that broke up the L-chondrite parent body?
  • 2014
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 400, s. 145-152
  • Tidskriftsartikel (refereegranskat)abstract
    • About a quarter of all meteorites falling on Earth today originate from the breakup of the L-chondrite parent body similar to 470 Ma ago, the largest documented breakup in the asteroid belt in the past similar to 3 Ga. A window into the flux of meteorites to Earth shortly after this event comes from the recovery of about 100 fossil L chondrites (1-21 cm in diameter) in a quarry of mid-Ordovician limestone in southern Sweden. Here we report on the first non-L-chondritic meteorite from the quarry, an 8 cm large winonaite-related meteorite of a type not known among present-day meteorite falls and finds. The noble gas data for relict spinels recovered from the meteorite show that it may be a remnant of the body that hit and broke up the L-chondrite parent body, creating one of the major asteroid families in the asteroid belt. After two decades of systematic recovery of fossil meteorites and relict extraterrestrial spinel grains from marine limestone, it appears that the meteorite flux to Earth in the mid-Ordovician was very different from that of today. (C) 2014 The Authors. Published by Elsevier B.V.
  •  
22.
  • Tanvir, N. R., et al. (författare)
  • The structure of star clusters in the outer halo of M31
  • 2012
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 422:1, s. 162-184
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a structural analysis of halo star clusters in M31 based on deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. The clusters in our sample span a range in galactocentric projected distance from 13 to 100 kpc and thus reside in rather remote environments. Ten of the clusters are classical globulars, whilst four are from the Huxor et al. population of extended, old clusters. For most clusters, contamination by M31 halo stars is slight, and so the profiles can be mapped reliably to large radial distances from their centres. We find that the extended clusters are well fit by analytic King profiles with similar to 20 parsec core radii and similar to 100 parsec photometric tidal radii, or by Sersic profiles of index similar to 1 (i.e. approximately exponential). Most of the classical globulars also have large photometric tidal radii in the range 50-100 parsec; however, the King profile is a less good fit in some cases, particularly at small radii. We find 60 per cent of the classical globular clusters exhibit cuspy cores which are reasonably well described by Sersic profiles of index similar to 2-6. Our analysis also reinforces the finding that luminous classical globulars, with half-light radii <10 parsec, are present out to radii of at least 100 kpc in M31, which is in contrast to the situation in the Milky Way where such clusters (other than the unusual object NGC 2419) are absent beyond 40 kpc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy