SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De Pascale M. P.) srt2:(2010-2014)"

Search: WFRF:(De Pascale M. P.) > (2010-2014)

  • Result 1-25 of 38
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Martucci, M., et al. (author)
  • Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment
  • 2014
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 742, s. 158-161
  • Journal article (peer-reviewed)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 2006. This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). In particular, PAMELA has registered many SEP events during solar cycle 24, offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
  •  
3.
  • Ricciarini, S. B., et al. (author)
  • PAMELA mission : Heralding a new era in cosmic ray physics
  • 2014
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X.
  • Conference paper (peer-reviewed)abstract
    • After seven years of data taking in space, the experiment PAMELA is showing very interesting features in cosmic rays, namely in the fluxes of protons, helium, electrons, that might change our basic vision of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy. In addition, PAMELA measurements of cosmic antiproton and positron fluxes are setting strong constraints to the nature of Dark Matter. The continuous particle detection is allowing a constant monitoring of the solar activity and detailed study of the solar modulation for a long period, giving important improvements to the comprehension of the heliosphere mechanisms. PAMELA is also measuring the radiation environment around the Earth, and has recently discovered an antiproton radiation belt.
  •  
4.
  • Boezio, M., et al. (author)
  • The PAMELA experiment and antimatter in the universe
  • 2014
  • In: Hyperfine Interactions. - : Springer Science and Business Media LLC. - 0304-3843 .- 1572-9540. ; 228:1-3, s. 101-109
  • Journal article (peer-reviewed)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The primary scientific goal is the measurement of the antiproton and positron energy spectra. Antiparticles are a natural component of the cosmic radiation being produced in the interaction between cosmic rays and the interstellar matter. They have been shown to be extremely interesting for understanding the propagation mechanisms of cosmic rays. Furthermore, novel sources of primary cosmic-ray antiparticles of either astrophysical or exotic origin (e.g. annihilation of dark matter particles) can also be probed. In this paper we review the PAMELA antiparticle results and their significance for the field of astroparticle physics.
  •  
5.
  • Di Felice, V., et al. (author)
  • Solar modulation of galactic hydrogen and helium over the 23rd solar minimum with the PAMELA experiment
  • 2013
  • In: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Conference paper (peer-reviewed)abstract
    • PAMELA has been orbiting the Earth for more than six years, gathering data on solar, galactic and trapped cosmic rays during the time of the last solar minimum. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle and antiparticle identification over a wide energy range and with an unprecedented precision. The quasi-polar orbit of the instrument, with an inclination of 70 degrees, makes it possible to measure low energy particles starting from about 100 MeV/n. In this work we present the time and rigidity dependence of the galactic proton and helium fluxes over the first 4 years of operation during the A < 0 solar minimum of solar cycle 23. 
  •  
6.
  • Formato, V., et al. (author)
  • Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the PAMELA experiment
  • 2014
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 742, s. 273-275
  • Journal article (peer-reviewed)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature, with particular focus on the antimatter component. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a Silicon-Tungsten calorimeter and a Neutron detector for lepton/hadron identification. The velocity and rigidity information allow the identification of different isotopes for Z = 1 and Z = 2 particles in the energy range 100 MeV/n to 1 GeV/n. In this work we will present the PAMELA results on the H and He isotope fluxes based on the data collected during the 23rd solar minimum from 2006 to 2007. Such fluxes carry relevant information helpful in constraining parameters in galactic cosmic rays propagation models complementary to those obtained from other secondary to primary measurements such as the boron-to-carbon ratio.
  •  
7.
  • Koldobskiy, S. A., et al. (author)
  • Galactic deuteron spectrum measured in PAMELA experiment
  • 2013
  • In: 23Rd European Cosmic Ray Symposium (And 32Nd Russian Cosmic Ray Conference). - : IOP Publishing.
  • Conference paper (peer-reviewed)abstract
    • Results of galactic deuteron spectrum measurement by means of PAMELA apparatus are described. PAMELA is an international experiment developed for antimatter search and measurement of p, He, electron and positron spectra in wide energy range. In addition, PAMELA allows to identify and measure deuteron spectrum at low energies. In this paper deuteron-to-proton ratio and deuteron spectrum are presented.
  •  
8.
  • Ricci, M., et al. (author)
  • Study on 2012 march 7 solar particle event and forbush decrease with the PAMELA experiment
  • 2013
  • In: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Conference paper (peer-reviewed)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astro-physics) space-borne experiment was launched on 15 June 2006 and has been continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. The on-board instrumentation is built around a permanent magnet with a silicon microstrip tracker, providing charge and track detection information. During solar maximum conditions of solar cycle 24, PAMELA has been providing key information about solar energetic particles (SEPs) and their influence at Earth. We discuss here the recent 2012 March 7 SEP event with a brief comment on the subsequent Forbush decrease, registered by PAMELA. This event was also observed by Fermi/LAT exhibiting unprecedented time-extended γ-ray emission (> 100 MeV) lasting nearly 20 hours. We compare the derived accelerated ion population at the Sun with the ion population measured in space by PAMELA and discuss the implications for particle acceleration. 
  •  
9.
  • Adriani, O., et al. (author)
  • Antiprotons in primary cosmic radiation with PAMELA experiment
  • 2013
  • In: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Conference paper (peer-reviewed)abstract
    • The latest measurements of antiprotons spectrum and antiproton-to-proton ratio in primary cosmic rays with PAMELA experiment are presented. They are in good agreement with model of secondary production of antiprotons in Galaxy, but they do not completely rule other sources at the high-energies. 
  •  
10.
  • Adriani, O., et al. (author)
  • The PAMELA Mission : Heralding a new era in precision cosmic ray physics
  • 2014
  • In: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 544:4, s. 323-370
  • Research review (peer-reviewed)abstract
    • On the 15th of June 2006, the PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment was launched onboard the Russian Resurs-DK1 satellite by a Soyuz rocket from the Baikonur space centre. The satellite was placed in a quasi-polar 70 degrees inclination orbit at an altitude varying between 350 km and 600 km. New results on the antiparticle component of the cosmic radiation were obtained. The positron energy spectrum and positron fraction were measured from 400 MeV up to 200 GeV revealing a positron excess over the predictions of commonly used propagation models. This can be interpreted either as evidence that the propagation models should be revised or in terms of dark matter annihilation or a pulsar contribution. The antiproton spectrum was measured over the energy range from 60 MeV to 350 GeV. The antiproton spectrum is consistent with secondary production and significantly constrains dark matter models. The energy spectra of protons and helium nuclei were measured up to 1.2 TV. The spectral shapes of these two species are different and cannot be described well by a single power law. For the First time the electron spectrum was measured up to 600 GeV complementing the information obtained from the positron data. Nuclear and isotopic composition was obtained with unprecedented precision. The variation of the low energy proton, electron and positron energy spectra was measured from July 2006 until December 2009 accurately sampling the unusual conditions of the most recent solar minimum activity period (2006-2009). Low energy particle spectra were accurately measured also for various solar events that occurred during the PAMELA mission. The Earth's magnetosphere was studied measuring the particle radiation in different regions of the magnetosphere. Energy spectra and composition of sub-cutoff and trapped particles were obtained. For the first time a belt of trapped antiprotons was detected in the South Atlantic Anomaly region. The flux was found to exceed that for galactic cosmic-ray antiprotons by three order of magnitude.
  •  
11.
  • Bazilevskaya, G. A., et al. (author)
  • Solar proton events at the end of the 23rd and start of the 24th solar cycle recorded in the PAMELA experiment
  • 2013
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 493-496
  • Journal article (peer-reviewed)abstract
    • The PAMELA magnetic spectrometer was launched into a near-Earth orbit on board the Resurs-DK1 satellite in June 2006; in December 2006, it recorded the last strong solar high-energy particle event of the 23rd solar cycle. A deficit was thereafter observed in solar energetic particle events because of the lengthy solar activity minimum and the weak evolution of the next (24th) solar cycle. As a result, only a few solar events involving protons with energies of more than 100 MeV were recorded between 2010 and 1012. This work presents the preliminary results from measurements of charged particle fluxes in these events, recorded by the Pamela spectrometer.
  •  
12.
  • Carbone, R., et al. (author)
  • Pamela observation of the 2012 may 17 gle event
  • 2013
  • In: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Conference paper (peer-reviewed)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment has been collecting data in orbit since July 2006, providing accurate measurements of the energy spectra and composition of the cosmic radiation from a few hundred MeV/n up to hundred GeV/n. This wide interval of measured energies makes PAMELA a unique instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but also PAMELA carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). PAMELA has registered many SEP events in solar cycle 24 including the 2012 May 17 GLE event (GLE 71), offering unique opportunities to address the question of high-energy SEP origin. Experimental performances and preliminary results on the 2012 May 17 events will be presented. We will discuss the derived particle injection time and compare with other time scales at the Sun including the flare and CME onset times. 
  •  
13.
  • Formato, V., et al. (author)
  • Galactic boron and carbon fluxes measured by the PAMELA experiment
  • 2013
  • In: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Conference paper (peer-reviewed)abstract
    • The PAMELA experiment is a satellite-borne apparatus that performs measurements of the cosmic radiation with a particular focus on antiparticles and light nuclei. The heart of experiment is a magnetic spectrometer to measure the particle rigidity and sign of charge. A Time-of-Flight system, a Silicon-Tungsten calorimeter, and a neutron detector allow particle identification and lepton/hadron discrimination. The apparatus is surrounded by a set of anticoincidence scintillation counters to reject multi-particle events. In this work we will present the Boron and Carbon fluxes measured by PAMELA from July 2006 to March 2008. Such data, and in particular the B/C flux ratio, can help the modelling of the galactic cosmic rays propagation. This can be a crucial point in predicting the astrophysical background of antimatter (positrons and antiprotons) in cosmic rays in the search for a dark matter signal. 
  •  
14.
  • Giaccari, U., et al. (author)
  • Anisotropy studies in the cosmic ray proton flux with the PAMELA experiment
  • 2013
  • In: Proceedings of the 9th workshop on Science with the New Generation of High Energy Gamma-ray Experiments: From high energy gamma sources to cosmic rays, one century after their discovery. - : Elsevier. ; , s. 123-128
  • Conference paper (peer-reviewed)abstract
    • Using data taken by the Pamela experiment during 5 years of operation we studied the anisotropy in the arrival direction distribution of cosmic ray protons with rigidity above 40 GV. In this survey we used two different and independent techniques to investigate the large and medium anisotropy patterns in the proton spectrum. With both methods the observed distribution of arrival directions is consistent with the isotropic expectation and no significant evidence of strong anisotropies has been observed.
  •  
15.
  • Koldobskiy, S. A., et al. (author)
  • Measurement of galactic cosmic-ray deuteron spectrum in the PAMELA experiment
  • 2013
  • In: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press. - 1062-8738. ; 77:5, s. 606-608
  • Journal article (peer-reviewed)abstract
    • This work presents the results of measuring the deuteron spectrum of Galactic cosmic rays (GCRs) with the PAMELA experiment. The PAMELA is an international experiment. Its main objectives are to search for antimatter and measure proton, helium nuclei, electron, and positron spectra over a wide range of energies. In addition, the experimental setup allows the detection of deuterons and the reconstruction of their spectra at low energies. Cosmic ray deuteron spectrum and the deuteron-proton ratio measured in the PAMELA experiment in the energy range of 50-650 MeV/nucleon are presented below.
  •  
16.
  • Mayorov, A. G., et al. (author)
  • Antiprotons of galactic cosmic radiation in the PAMELA experiment
  • 2013
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 602-605
  • Journal article (peer-reviewed)abstract
    • A method for antiproton selection against a background of electrons, based on a mathematical model of data classification using variations in interparticle interaction in a calorimeter, and a method for excluding events accompanied by scattering in the inner detectors of a tracking system (which result in errors in the measured trajectory's curvature and charge sign) from analysis are discussed in this paper. Antiproton spectra and antiproton/proton flux ratio at energies of 0.06 to 350 GeV with statistics of events surpassing those in [1] are obtained. The results can be used to create models for the generation and distribution of particles in the Galaxy, and for searching and studying the nature of hypothetical dark matter particles.
  •  
17.
  • Adriani, O., et al. (author)
  • Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment
  • 2013
  • In: JETP Letters. - 0021-3640 .- 1090-6487. ; 96:10, s. 621-627
  • Journal article (peer-reviewed)abstract
    • It is interesting to measure the antiproton galactic component in cosmic rays in order to study the mechanisms by which particles and antiparticles are generated and propagate in the Galaxy and to search for new sources of, e.g., annihilation or decay of dark matter hypothetical particles. The antiproton spectrum and the ratio of the fluxes of primary cosmic ray antiprotons to protons with energies of 60 MeV to 350 GeV found from the data obtained from June 2006 to January 2010 in the PAMELA experiment are presented. The usage of the advanced data processing method based on the data classification mathematical model made it possible to increase statistics and analyze the region of higher energies than in the earlier works.
  •  
18.
  • Adriani, O., et al. (author)
  • Time Dependence Of The Proton Flux Measured By Pamela During The 2006 July-2009 December Solar Minimum
  • 2013
  • In: Astrophysical Journal. - : IOP Publishing. - 0004-637X .- 1538-4357. ; 765:2, s. 91-
  • Journal article (peer-reviewed)abstract
    • The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation. These spectra, when measured near Earth, are significantly affected by the solar magnetic field. A comprehensive description of the cosmic radiation must therefore include the transport and modulation of cosmic rays inside the heliosphere. During the end of the last decade, the Sun underwent a peculiarly long quiet phase well suited to study modulation processes. In this paper we present proton spectra measured from 2006 July to 2009 December by PAMELA. The large collected statistics of protons allowed the time variation to be followed on a nearly monthly basis down to 400 MV. Data are compared with a state-of-the-art three-dimensional model of solar modulation.
  •  
19.
  • Bruno, A., et al. (author)
  • First detection of geomagnetically trapped antiprotons by the PAMELA experiment
  • 2011
  • In: Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011. - : Institute of High Energy Physics. ; , s. 86-89
  • Conference paper (peer-reviewed)abstract
    • We present the measurement of geomagnetically trapped antiprotons in the South Atlantic Anomaly performed by the PAMELA satellite-bourne experiment. The existence of an antiproton radiation belt, predicted by several models as the product of cosmic ray interactions with the residual terrestrial atmosphere, is evidenced for the first time. PAMELA measured the antiproton spectrum in the kinetic energy range between 60 and 750 MeV, reporting a trapped antiproton flux which exceeds by about 3 orders of magnitude the interplanetary cosmic ray antiproton flux. An estimation of the mean under-cutoff antiproton flux outside radiation belts has been also provided.
  •  
20.
  • Bruno, A., et al. (author)
  • Precise cosmic rays measurements with PAMELA
  • 2013
  • In: Acta Polytechnica. - 1210-2709. ; 53:Suppl.1, s. 712-717
  • Journal article (peer-reviewed)abstract
    • The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium), and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.
  •  
21.
  • Bruno, A., et al. (author)
  • Trapped protons in SAA measured by the PAMELA experiment
  • 2011
  • In: Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011. - : Institute of High Energy Physics. ; , s. 82-85
  • Conference paper (peer-reviewed)abstract
    • An accurate measurement of under cutoff proton fluxes in the energy range 60 MeV ÷ 3 GeV has been performed by the PAMELA satellite-borne experiment. Thanks to the high identification performances and to the semipolar and elliptic satellite orbit, PAMELA is able to provide information about spectra and composition of particles in different regions of the magnetosphere. Here we present the measurement of the geomagnetically trapped protons from the inner radiation belt (SAA). The fluxes as a function of equatorial pitch angle and McIlwain L-shell are reported.
  •  
22.
  • De Simone, N., et al. (author)
  • Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA and Ulysses observations
  • 2011
  • In: Astrophysics and Space Sciences Transactions (ASTRA). - : Copernicus GmbH. - 1810-6528 .- 1810-6536. ; 7:3, s. 425-434
  • Journal article (peer-reviewed)abstract
    • Ulysses, launched on 6 October 1990, was placed in an elliptical, high inclined (80.2°) orbit around the Sun, and was switched off in June 2009. It has been the only spacecraft exploring high-latitude regions of the inner heliosphere. The Kiel Electron Telescope (KET) aboard Ulysses measures electrons from 3 MeV to a few GeV and protons and helium in the energy range from 6 MeV/nucleon to above 2 GeV/nucleon. The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) space borne experiment was launched on 15 June 2006 and is continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. Thus the combination of Ulysses and PAMELA measurements is ideally suited to determine the spatial gradients during the extended minimum of solar cycle 23. For protons in the rigidity interval 1.6-1.8 GV we find a radial gradient of 2.7%/AU and a latitudinal gradient of -0.024%/degree. Although the latitudinal gradient is as expected negative, its value is much smaller than predicted by current particle propagation models. This result is of relevance for the study of propagation parameters in the inner heliosphere.
  •  
23.
  • Formato, V., et al. (author)
  • Hydrogen and helium isotopes flux in cosmic rays with the PAMELA experiment
  • 2013
  • In: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Conference paper (peer-reviewed)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature, with particular focus on the antimatter component. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a Silicon-Tungsten calorimeter and a Neutron detector for lepton/hadron identification. The beta and rigidity information allow to identify isotopes for Z = 1 and Z = 2 particles in the energy range 100 MeV/n to 1 GeV/n. In this work we will present the final PAMELA results on the H and He isotope fluxes measured during the 23rd solar minimum from 2006 to 2007. Such fluxes carry relevant information helpful in constraining parameters in galactic cosmic rays propagation models complementary to those obtained from other secondary to primary measurements such as the boron-to-carbon ratio. 
  •  
24.
  • Mocchiutti, E., et al. (author)
  • Results from PAMELA
  • 2011
  • In: NUCL PHYS B-PROC SUP. - : Elsevier BV. ; , s. 243-248
  • Conference paper (peer-reviewed)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15(th) 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - several hundred GeV). A primary scientific goal is to search for dark matter particle annihilation by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment are presented with a particular focus on cosmic ray antiprotons and positrons.
  •  
25.
  • Adriani, O., et al. (author)
  • A statistical procedure for the identification of positrons in the PAMELA experiment
  • 2010
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:1, s. 1-11
  • Journal article (peer-reviewed)abstract
    • The PAMELA satellite experiment has measured the cosmic-ray positron fraction between 1.5 GeV and 100 GeV. The need to reliably discriminate between the positron signal and proton background has required the development of an ad hoc analysis procedure. In this paper, a method for positron identification is described and its stability and capability to yield a correct background estimate is shown. The analysis includes new experimental data, the application of three different fitting techniques for the background sample and an estimate of systematic uncertainties due to possible inaccuracies in the background selection. The new experimental results confirm both solar modulation effects on cosmic-rays with low rigidities and an anomalous positron abundance above 10 GeV. (c) 2010 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view