SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Delahunt B) srt2:(2020-2024)"

Search: WFRF:(Delahunt B) > (2020-2024)

  • Result 1-25 of 56
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Akgul, M, et al. (author)
  • Diagnostic approach in TFE3-rearranged renal cell carcinoma: a multi-institutional international survey
  • 2021
  • In: Journal of clinical pathology. - : BMJ. - 1472-4146 .- 0021-9746. ; 74:5, s. 291-299
  • Journal article (peer-reviewed)abstract
    • Transcription factor E3-rearranged renal cell carcinoma (TFE3-RCC) has heterogenous morphologic and immunohistochemical (IHC) features.131 pathologists with genitourinary expertise were invited in an online survey containing 23 questions assessing their experience on TFE3-RCC diagnostic work-up.Fifty (38%) participants completed the survey. 46 of 50 participants reported multiple patterns, most commonly papillary pattern (almost always 9/46, 19.5%; frequently 29/46, 63%). Large epithelioid cells with abundant cytoplasm were the most encountered cytologic feature, with either clear (almost always 10/50, 20%; frequently 34/50, 68%) or eosinophilic (almost always 4/49, 8%; frequently 28/49, 57%) cytology. Strong (3+) or diffuse (>75% of tumour cells) nuclear TFE3 IHC expression was considered diagnostic by 13/46 (28%) and 12/47 (26%) participants, respectively. Main TFE3 IHC issues were the low specificity (16/42, 38%), unreliable staining performance (15/42, 36%) and background staining (12/42, 29%). Most preferred IHC assays other than TFE3, cathepsin K and pancytokeratin were melan A (44/50, 88%), HMB45 (43/50, 86%), carbonic anhydrase IX (41/50, 82%) and CK7 (32/50, 64%). Cut-off for positive TFE3 fluorescent in situ hybridisation (FISH) was preferably 10% (9/50, 18%), although significant variation in cut-off values was present. 23/48 (48%) participants required TFE3 FISH testing to confirm TFE3-RCC regardless of the histomorphologic and IHC assessment. 28/50 (56%) participants would request additional molecular studies other than FISH assay in selected cases, whereas 3/50 participants use additional molecular cases in all cases when TFE3-RCC is in the differential.Optimal diagnostic approach on TFE3-RCC is impacted by IHC and/or FISH assay preferences as well as their conflicting interpretation methods.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Egevad, L, et al. (author)
  • Benign mimics of prostate cancer
  • 2021
  • In: Pathology. - : Elsevier BV. - 1465-3931 .- 0031-3025. ; 53:1, s. 26-35
  • Journal article (peer-reviewed)
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Bulten, W, et al. (author)
  • Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
  • 2022
  • In: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:1, s. 154-
  • Journal article (peer-reviewed)abstract
    • Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge—the largest histopathology competition to date, joined by 1,290 developers—to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 (95% CI, 0.835–0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Egevad, L, et al. (author)
  • Identification of areas of grading difficulties in prostate cancer and comparison with artificial intelligence assisted grading
  • 2020
  • In: Virchows Archiv : an international journal of pathology. - : Springer Science and Business Media LLC. - 1432-2307. ; 477:6, s. 777-786
  • Journal article (peer-reviewed)abstract
    • The International Society of Urological Pathology (ISUP) hosts a reference image database supervised by experts with the purpose of establishing an international standard in prostate cancer grading. Here, we aimed to identify areas of grading difficulties and compare the results with those obtained from an artificial intelligence system trained in grading. In a series of 87 needle biopsies of cancers selected to include problematic cases, experts failed to reach a 2/3 consensus in 41.4% (36/87). Among consensus and non-consensus cases, the weighted kappa was 0.77 (range 0.68–0.84) and 0.50 (range 0.40–0.57), respectively. Among the non-consensus cases, four main causes of disagreement were identified: the distinction between Gleason score 3 + 3 with tangential cutting artifacts vs. Gleason score 3 + 4 with poorly formed or fused glands (13 cases), Gleason score 3 + 4 vs. 4 + 3 (7 cases), Gleason score 4 + 3 vs. 4 + 4 (8 cases) and the identification of a small component of Gleason pattern 5 (6 cases). The AI system obtained a weighted kappa value of 0.53 among the non-consensus cases, placing it as the observer with the sixth best reproducibility out of a total of 24. AI may serve as a decision support and decrease inter-observer variability by its ability to make consistent decisions. The grading of these cancer patterns that best predicts outcome and guides treatment warrants further clinical and genetic studies. Results of such investigations should be used to improve calibration of AI systems.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 56

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view