SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ertel K.) srt2:(2020-2023)"

Search: WFRF:(Ertel K.) > (2020-2023)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Makos, I., et al. (author)
  • Attosecond photoelectron spectroscopy using high-harmonic generation and seeded free-electron lasers
  • 2023
  • In: 2023 Photonics North, PN 2023. - 9798350326734
  • Conference paper (peer-reviewed)abstract
    • In this work, we use attosecond time-resolved techniques to investigate photoionization dynamics on its natural timescale, employing both high harmonic generation and seeded free-electron lasers to generate extreme ultraviolet attosecond pulse trains for our studies. With the former approach, we examine the role of nuclear motion in molecular photoionization dynamics, while with the latter we introduce a novel attosecond timing tool for single-shot characterization of the relative phase between the XUV and the infrared field.
  •  
2.
  • Maroju, P. K., et al. (author)
  • Analysis of two-color photoelectron spectroscopy for attosecond metrology at seeded free-electron lasers
  • 2021
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:4
  • Journal article (peer-reviewed)abstract
    • The generation of attosecond pulse trains at free-electron lasers opens new opportunities in ultrafast science, as it gives access, for the first time, to reproducible, programmable, extreme ultraviolet (XUV) waveforms with high intensity. In this work, we present a detailed analysis of the theoretical model underlying the temporal characterization of the attosecond pulse trains recently generated at the free-electron laser FERMI. In particular, the validity of the approximations used for the correlated analysis of the photoelectron spectra generated in the two-color photoionization experiments are thoroughly discussed. The ranges of validity of the assumptions, in connection with the main experimental parameters, are derived.
  •  
3.
  • Quanz, S. P., et al. (author)
  • Large Interferometer For Exoplanets (LIFE) I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Journal article (peer-reviewed)abstract
    • Context. One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale that can spatially separate the signals from exoplanets and their host stars and thus directly scrutinize the exoplanets and their atmospheres.Aims. We seek to quantify the exoplanet detection performance of a space-based mid-infrared (MIR) nulling interferometer that measures the thermal emission of exoplanets. We study the impact of various parameters and compare the performance with that of large single-aperture mission concepts that detect exoplanets in reflected light.Methods. We have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc of the Sun. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect. Considering single visits only, we discuss two different scenarios for distributing 2.5 yr of an initial search phase among the stellar targets. Different apertures sizes and wavelength ranges are investigated.Results. An interferometer consisting of four 2 m apertures working in the 4–18.5 μ.m wavelength range with a total instrument throughput of 5% could detect up to ≈550 exoplanets with radii between 0.5 and 6 R⊕ with an integrated S/N ≥ 7. At least ≈160 of the detected exoplanets have radii ≤1.5 R⊕. Depending on the observing scenario, ≈25–45 rocky exoplanets (objects with radii between 0.5 and 1.5 R⊕) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four 3.5 m apertures, the total number of detections can increase to up to ≈770, including ≈60–80 rocky eHZ planets. With four times 1 m apertures, the maximum detection yield is ≈315 exoplanets, including ≤20 rocky eHZ planets. The vast majority of small, temperate exoplanets are detected around M dwarfs. The impact of changing the wavelength range to 3–20 μm or 6–17 μm on the detection yield is negligible.Conclusions. A large space-based MIR nulling interferometer will be able to directly detect hundreds of small, nearby exoplanets, tens of which would be habitable world candidates. This shows that such a mission can compete with large single-aperture reflected light missions. Further increasing the number of habitable world candidates, in particular around solar-type stars, appears possible via the implementation of a multi-visit strategy during the search phase. The high median S/N of most of the detected planets will allow for first estimates of their radii and effective temperatures and will help prioritize the targets for a second mission phase to obtain high-S/N thermal emission spectra, leveraging the superior diagnostic power of the MIR regime compared to shorter wavelengths.
  •  
4.
  • Lazzoni, C., et al. (author)
  • The search for disks or planetary objects around directly imaged companions : a candidate around DH Tauri B
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • Context. In recent decades, thousands of substellar companions have been discovered with both indirect and direct methods of detection. While the majority of the sample is populated by objects discovered using radial velocity and transit techniques, an increasing number have been directly imaged. These planets and brown dwarfs are extraordinary sources of information that help in rounding out our understanding of planetary systems.Aims. In this paper, we focus our attention on substellar companions detected with the latter technique, with the primary goal of investigating their close surroundings and looking for additional companions and satellites, as well as disks and rings. Any such discovery would shed light on many unresolved questions, particularly with regard to their possible formation mechanisms.Methods. To reveal bound features of directly imaged companions, whether for point-like or extended sources, we need to suppress the contribution from the source itself. Therefore, we developed a method based on the negative fake companion technique that first estimates the position in the field of view (FoV) and the flux of the imaged companion with high precision, then subtracts a rescaled model point spread function (PSF) from the imaged companion, using either an image of the central star or another PSF in the FoV. Next it performs techniques, such as angular differential imaging, to further remove quasi-static patterns of the star (i.e., speckle contaminants) that affect the residuals of close-in companions.Results. After testing our tools on simulated companions and disks and on systems that were chosen ad hoc, we applied the method to the sample of substellar objects observed with SPHERE during the SHINE GTO survey. Among the 27 planets and brown dwarfs we analyzed, most objects did not show remarkable features, which was as expected, with the possible exception of a point source close to DH Tau B. This candidate companion was detected in four different SPHERE observations, with an estimated mass of ~1MJup, and a mass ratio with respect to the brown dwarf of 1∕10. This binary system, if confirmed, would be the first of its kind, opening up interesting questions for the formation mechanism, evolution, and frequency of such pairs. In order to address the latter, the residuals and contrasts reached for 25 companions in the sample of substellar objects observed with SPHERE were derived. If the DH Tau Bb companion is real, the binary fraction obtained is ~7%, which is in good agreement with the results obtained for field brown dwarfs.Conclusions. While there may currently be many limitations affecting the exploration of bound features to directly imaged exoplanets and brown dwarfs, next-generation instruments from the ground and space (i.e., JWST, ELT, and LUVOIR) will be able to image fainter objects and, thus, drive the application of this technique in upcoming searches for exo-moons and circumplanetary disks. 
  •  
5.
  • Maroju, Praveen K., et al. (author)
  • A Novel Attosecond Timing Tool for Free-Electron Laser Experiment
  • 2020
  • In: High Intensity Lasers and High Field Phenomena 2020. - 9781943580736
  • Conference paper (peer-reviewed)abstract
    • We demonstrate a novel timing tool for Free-Electron Lasers to determine the delay between an attosecond pulse train and infrared pulse with sub-optical-cycle resolu-. tion.
  •  
6.
  • Mesa, D., et al. (author)
  • Signs of late infall and possible planet formation around DR Tau using VLT/SPHERE and LBTI/LMIRCam
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Journal article (peer-reviewed)abstract
    • Context. Protoplanetary disks around young stars often contain substructures like rings, gaps, and spirals that could be caused by interactions between the disk and forming planets.Aims. We aim to study the young (1-3 Myr) star DR Tau in the near-infrared and characterize its disk, which was previously resolved through submillimeter interferometry with ALMA, and to search for possible substellar companions embedded into it.Methods. We observed DR Tau with VLT/SPHERE both in polarized light (H broad band) and total intensity (in Y, J, H, and K spectral bands). We also performed L' band observations with LBTI/LMIRCam on the Large Binocular Telescope (LBT). We applied differential imaging techniques to analyze both the polarized data, using dual beam polarization imaging, and the total intensity data, using angular and spectral differential imaging.Results. We found two previously undetected spirals extending north-east and south of the star, respectively. We further detected an arc-like structure north of the star. Finally a bright, compact and elongated structure was detected at a separation of 303 +/- 10 mas and a position angle 21.2 +/- 3.7 degrees, just at the root of the north-east spiral arm. Since this feature is visible both in polarized light and total intensity and has a blue spectrum, it is likely caused by stellar light scattered by dust.Conclusions. The two spiral arms are at different separations from the star, have very different pitch angles, and are separated by an apparent discontinuity, suggesting they might have a different origin. The very open southern spiral arm might be caused by infalling material from late encounters with cloudlets into the formation environment of the star itself. The compact feature could be caused by interaction with a planet in formation still embedded in its dust envelope and it could be responsible for launching the north-east spiral. We estimate a mass of the putative embedded object of the order of few M-Jup.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view